СОСТАВ ДЛЯ ИЗОЛЯЦИИ ВОДОПРИТОКА В ДОБЫВАЮЩУЮ СКВАЖИНУ И РЕГУЛИРОВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНЫХ СКВАЖИН Российский патент 2007 года по МПК C09K8/88 

Описание патента на изобретение RU2293102C1

Предложение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающую скважину и регулирования профиля приемистости нагнетательных скважин в слоисто-неоднородных и трещиноватых коллекторах.

Известен полимерный тампонажный состав для ограничения водопритока, изоляции зон поглощений в скважинах, содержащий ацетоноформальдегидную смолу, мочевину, метасиликат натрия или калия и воду (Авт. св. №1350331 СССР, МПК Е 21 В 33/138, опубл. 1987 г.).

В известном составе при взаимодействии указанных реагентов происходит процесс образования геля, что позволяет использовать его для изоляции притока воды.

Недостатком состава является то, что при введении метасиликата натрия или калия в ацетоноформальдегидную смолу происходит процесс отверждения, в результате образуется твердая или упругая пластмасса с низкой фильтруемостью, которая не дает возможности проникнуть им в мелкие зазоры и трещины на большое расстояние и создать изоляционный экран большого радиуса, что отрицательно сказывается на закупоривающей способности состава и качестве изоляции.

Кроме того, данный состав подвержен разрушению при депрессии в пласте, в результате нарушается сплошность экрана, сцепление со стенкой скважины и снижается эффективность изоляции.

Известен состав для регулирования проницаемости пласта и изоляции водопритоков, включающий щелочь, водорастворимый полимер и воду (патент №2147671 РФ, МПК7 Е 21 В 33/138, 43/32, опубл. 20.04.2000). Для приготовления состава в качестве щелочи используют гумат натрия, в качестве полимера - полиакриламид или карбоксиметил-целлюлозу, в качестве воды используют пресную воду. При смешении состава в пласте с минерализованными водами или специально закаченными оторочками растворов солей двух- и трехвалентных металлов происходит коагуляция и осаждение гуминовых веществ с образованием объемных и рыхлых осадков. Водорастворимый полимер увеличивает объем образующегося осадка и способствует образованию более крупных агрегатов гуминовых веществ, что повышает эффективность действия состава в высокопроницаемых пластах. Однако образованные объемные осадки в обводненных высокопроницаемых зонах и пропластках недостаточно эффективно способствуют изоляции водопритока в добывающую скважину и регулированию профиля приемистости нагнетательных скважин из-за низкой прочности и стабильности состава и отсутствия адгезии.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является состав для изоляции водопритока в добывающую скважину и регулирования профиля приемистости нагнетательных скважин, включающий водорастворимый полимер, щелочь и воду (см. Горбунов А.Т., Бученков Л.Н. Щелочное заводнение // М.: Недра. - 1989. - С.42-48). В качестве водорастворимого полимера используют полиакриламид, в качестве щелочи - едкий натр или кальцинированную соду. Применение смеси полимера и щелочи в соотношении 1:1 при концентрации реагентов в растворе 0,1% позволяет максимально повысить фильтруемость состава за счет снижения вязкости и адсорбции полимера. Образуется неоднородная система, представляющая собой объемные и рыхлые осадки, в которой молекулы полимера связывают отдельные частицы осадка в более плотные агрегаты.

Недостатком известного состава является низкая эффективность изоляции водопритока в добывающую скважину и регулирования профиля приемистости нагнетательных скважин в слоисто-неоднородных и трещиноватых коллекторах за счет отсутствия эластичных свойств и способности к обратимым деформациям получаемого осадка, недостаточно высоких прочностных и адгезионных свойств в пористой среде, обеспечивающих глубокое проникновение в пласт и прочность сцепления состава с породой. Кроме того, при контакте состава с минерализованной пластовой водой резко возрастает его вязкость, и образуются плотные агрегаты, которые не способны проникать на значительную глубину пласта и формировать водоизоляционный экран. Ограничение используемых компонентов состава и их количественного соотношения сужает технологические возможности использования состава.

Технической задачей предложения является повышение прочностных и адгезионных свойств состава при одновременном получении однородной эластичной системы и обеспечении глубокого проникновения состава в высокопроницаемый пласт, более полного перекрытия поровых каналов и перераспределения на низкопроницаемые, неохваченные заводнением зоны, расширение диапазона гелеобразования состава, повышение его стабильности и расширение технологических возможностей состава.

Поставленная задача решается тем, что состав для изоляции водопритока в добывающую скважину и регулирования профиля приемистости нагнетательных скважин, содержащий водорастворимый полимер, щелочь и воду, согласно предложению, дополнительно содержит ацетоноформальдегидную смолу, в качестве полимера он содержит полиакриламид или полиэтиленоксид, в качестве щелочи он содержит едкий натр или калий или каустическую соду при следующем соотношении компонентов, мас.%:

Полиакриламид или полиэтиленоксид0,05-0,5Едкий натр или калий или каустическая сода1,0-5,0Ацетоноформальдегидная смола2,0-90,0Водаостальное

При смешении ацетоноформальдегидной смолы с полиакриламидом или полиэтиленоксидом в присутствии едкого натра или калия или каустической соды и воды с минерализацией от 0,5 до 260 г/л происходит дополнительное структурирование метилольных групп с образованием однородной гомогенной системы. В результате протекания этой реакции образуется эластичный гель с широким диапазоном гелеобразования, обеспечивающий глубокое проникновение состава в высокопроницаемый пласт, полное перекрытие поровых каналов и перераспределение на низкопроницаемые, неохваченные заводнением зоны с образованием водоизоляционного экрана, представляющего собой прочную структуру с ярко выраженным синергетическим эффектом при определенном соотношении компонентов, что обеспечивает увеличение нефтеотдачи и ограничение водопритока в скважину. Дополнительное введение ацетоноформальдегидной смолы в состав повышает его стабильность, прочность сцепления с пористой средой.

Состав для изоляции водопритока в добывающую скважину и регулирования профиля приемистости нагнетательных скважин эффективен как на ранней, так и на поздней стадиях разработки нефтяных месторождений со слоисто-неоднородными и трещиноватыми коллекторами.

При приготовлении состава используют следующие реагенты:

в качестве водорастворимого полимера:

- полиакриламид (ПАА) - отечественный по ТУ 6-16-2531-81, ТУ 6-01-1049-81, ТУ 14-6-121-75, импортные с молекулярной массой (3-15)·106;

- полиэтиленоксид (ПЭО) с молекулярной массой (1,5-10)·106;

в качестве щелочи:

- щелочные реагенты (едкий натр или калий (ГОСТ 2263-79), каустическая сода;

ацетоноформальдегидная смола (АЦФ) по ТУ 2228-006-48090685-2002, представляет собой однородную жидкость от светлого до коричневого цвета.

Анализ патентной и научно-технической литературы позволил сделать заключение об отсутствии технических решений, содержащих существенные признаки заявляемого состава, выполняющих аналогичную задачу, следовательно, предлагаемый состав отвечает критериям "новизна" и "изобретательский уровень".

Эффективность заявляемого состава определяют экспериментально по ниже описанным методикам.

Состав готовят следующим образом в различных массовых соотношениях.

Водорастворимый полимер (ПАА или ПЭО) готовят путем дозирования в воду с минерализацией от 0,5 до 260 г/л при перемешивании в течение одного часа. Затем в полученный раствор вводят ацетоноформальдегидную смолу и перемешивают не более 30 минут. В приготовленную композицию добавляют водный раствор едкого натра или калия или каустическую соду, перемешивают в течение 10-20 минут и оставляют на время гелеобразования. После чего измеряют сдвиговую прочность образовавшегося геля.

Время гелеобразования определяют по интервалу времени от момента смешения реагентов до момента потери текучести композиции и образования объемной структуры.

Прочностные и адгезионные свойства образующихся гелей оценивают значением сдвиговой прочности геля при скорости сдвига 1,4 с-1, измеренным на ротационном вискозиметре "Полимер РПЭ-1М".

Стабильность состава определяют по изменению прочностных свойств во времени: в начальный момент образования объемной структуры и через 12 месяцев.

Ниже приведены примеры, подтверждающие возможность осуществления предложения.

Пример 1 (соответствует п.38). Приготовление состава для изоляции водопритока в добывающую скважину.

Состав готовят при следующем соотношении компонентов, мас.%:

Полиакриламид0,2Едкий натр2,0Ацетоноформальдегидная смола марки АЦФ-7525,0Вода с минерализацией 0,5 г/л72,8

ПАА растворяют в воде и перемешивают в течение одного часа. Затем в полученный раствор добавляют ацетоноформальдегидную смолу и перемешивают с помощью механической мешалки в течение 30 минут. Затем в приготовленную композицию добавляют едкий натр и перемешивают в течение 10 минут. Отбирают половину приготовленной композиции для определения стабильности состава. Начальная вязкость состава составляет 25 мПа·с. Время гелеобразования - 2 часа. Сдвиговая прочность геля 1050 Па.

Отобранный состав стабилен, то есть не изменяет свои технологические показатели в течение 12 месяцев, прочность увеличилась в 1,5 раза.

Пример 2 (соответствует п.10). Приготовление состава для регулирования профиля приемистости нагнетательных скважин.

Состав готовят при следующем соотношении компонентов, мас.%:

ПЭО0,05Каустическая сода1,5Ацетоноформальдегидная смола марки АЦФ-652,0Вода с минерализацией 60 г/л96,45

ПЭО растворяют в воде и перемешивают в течение одного часа. Затем в полученный раствор добавляют ацетоноформальдегидную смолу и перемешивают с помощью механической мешалки в течение 25 минут. Затем в приготовленную композицию добавляют каустическую соду и перемешивают в течение 15 минут. Отбирают половину приготовленной композиции для определения стабильности состава. Начальная вязкость полученного состава составляет 7,5 мПа·с. Время гелеобразования - 24 часа. Сдвиговая прочность геля - 350 Па.

Отобранный состав сохраняет стабильность, то есть не изменяет свои технологические показатели в течение 12 месяцев, прочность увеличилась в 1,5 раза.

Примеры по пп.13-18, 20-23, 25-34, 36, 38-75, 77-80 производят аналогично примеру 1.

Примеры по пп.10, 12, 29 производят аналогично примеру 2.

Результаты испытаний предлагаемого состава и состава прототипа приведены в таблице 1. Из таблицы 1 видно, что величина сдвиговой прочности геля зависит от количественного содержания компонентов. Оптимальными концентрациями компонентов являются составы 10, 12-18, 20-23, 25-34, 36, 38-75, 77-80, при этом водорастворимого полимера 0,05-0,5 мас.%, щелочи 1,0-5,0 мас.%, ацетоноформальдегидной смолы 2,0-90,0 мас.%, воды - остальное.

При содержании в составе ацетоноформальдегидной смолы менее 2,0 мас.% сдвиговая прочность геля составляет 50 Па (состав 9) и несущественно отличается от прототипа 45 Па (состав 87).

При введении ацетоноформальдегидной смолы сдвиговая прочность предлагаемого состава увеличивается по сравнению с составом прототипа (составы 87, 88) и приводит к дополнительному структурированию и увеличению адгезионных свойств.

При содержании водорастворимого полимера менее 0,05 мас.% и щелочи менее 1,0 мас.% не происходит образование геля и при смешении с ацетоноформальдегидной смолой не приводит к образованию прочного состава (составы 1-8,11) и не обеспечивает эффективности изоляционных работ.

При увеличении содержания в составе ПАА или ПЭО более 0,5 мас.%, ацетоноформальдегидной смолы более 90 мас.% использовать состав нецелесообразно с экономической и с технологической точек зрения: из-за увеличения стоимости состава и снижения времени гелеобразования состава. При закачке в пласт состав не обеспечивает проникновение в пористую среду (составы 19, 24, 35, 37, 76, 81-86).

Из таблицы 1 видно, что дополнительное введение ацетоноформальдегидной смолы позволяет получить состав с улучшенными технологическими свойствами при одновременном получении однородной эластичной системы, что обеспечивает глубокое проникновение состава в высокопроницаемый пласт, более полное перекрытие поровых каналов и перераспределение на низкопроницаемые, неохваченные заводнением зоны. Расширяется диапазон гелеобразования состава и повышается его стабильность.

Для оценки эффективности изоляции и снижения водопритока проведены опыты на насыпных моделях пласта общепринятым методом. Модель пласта представляла собой металлическую трубку длиной 0,5 м, диаметром 0,03 м, набитую кварцевым песком определенной фракции. Модель пласта сначала вакуумировали, насыщали водой, определяли исходную проницаемость по воде, затем закачивали исследуемые составы. Размер оторочки состава от объема пор составлял 30%. Модель выдерживали в течение суток для полного гелеобразования, затем переворачивали и в обратном направлении определяли проницаемость по воде. Тем самым моделировали процесс пуска скважин и добычи нефти из пласта после проведения водоизоляционных работ. Во всех опытах перепад давления между торцами модели пласта составлял 0,1 МПа.

Эффект изоляции (Э) определяли по формуле:

Э=(K1-K2)/K1·100%;

где К1 - проницаемость по воде до закачки предлагаемого состава, мкм2;

К2 - проницаемость по воде после закачки предлагаемого состава, мкм2.

Результаты исследований представлены в таблице 2, при этом номера закачиваемых составов соответствуют номерам составов в таблице 1 (№ п/п).

Из таблицы 2 видно, что предлагаемый состав в отличие от прототипа обладает высокой эффективностью изоляции (98-100%) против 83-88% по прототипу.

Адгезионные свойства определяют по характеру разрушения образцов модели пласта. При разрушении образцов модели пласта предлагаемый состав не разрушается, а сохраняет структуру сшитого геля и остается прочно сцепленным с моделью пласта. Состав по прототипу не образует связанную структуру с моделью пласта, что дает возможность судить об увеличении адгезии предлагаемого состава.

Таким образом, приведенные результаты испытаний состава для изоляции водопритока в добывающую скважину и регулирования профиля приемистости нагнетательных скважин свидетельствуют о возможности получения однородной эластичной системы (геля), обеспечивающей глубокое проникновение состава в высокопроницаемый пласт, более полного перекрытия поровых каналов и перераспределения на низкопроницаемые, неохваченные заводнением зоны, обладающих высокой прочностью и адгезией к породам пласта при одновременном расширении диапазона гелеобразования состава и повышения его стабильности.

Предложение позволяет повысить качество изоляционных работ по ограничению водопритока в нефтяные скважины и работ по регулированию профиля приемистости нагнетательных скважин, что обеспечивает получение дополнительной добычи нефти.

Таблица 1№ п/пСостав, мас %Начальная вязкость, мПа·сПрочность, ПаВремя гелеобразования, чПрочность состава, ПаПримечаниеВодораств. полимерАЦФЩелочьВодаПААПЭОЕдкий натрЕдкий калийКауст. сода1234567891011121310,01-2,01,0--96,991,2--Геля нет20,01255,069,993,0осадок30,0130-0,569,496,0Геля нет40,01505,044,9910,03паста50,01605,034,9923,01.5камень60,01705,024,9962-1,0-"-70,01805,0--14,99115-6,5загущение80,01905,04,992480,5камень90,051,51,596,956,05036Гель слабый100,052,01,596,457,535024530гель110,055,00,594,458,07048150Гель слабый120,055,01,593,458,045024900гель130,05253,071,958,010005,02500гель140,05255,069,958,015005,03000гель150,05305,064,9511,019504,53800гель160,05305,064,9510,919204,53720гель170,05502,047,9512,017006,03800гель180,05505,044,9512,342003,56700гель190,05506,043,951343000,168500Твердая масса200,05602,037,9531,037004,56400гель210.05605,034,9531,0480027450гель220,05702,027,9571410037130гель230,05705,024,9571495027600гель240,05706,023,957150000,337680Твердая масса250,05801,018,95903150243780гель260,05801,018,951053000243600гель270,05901,08,9511036501,05475гель

Продолжение таблицы 112345678910111213280,05901,58,4511041000,36150гель290,1102,087,911,0210151050гель300,1252,072,99,07505,03700гель310,1302,067,911,08205,04100гель320,1502,047,912,012004,01820гель330,1505,044,912,021005-63150гель340,1605,034,930,043104,08620гель350,1606,033,935,043800,515330Твердая масса360,1705,024,975,050004,59500гель370,1706,023,980,051000,515450Твердая масса380,2252,072,82510505,02575гель390,2253,071,82515404,53080гель400,2255,069,82521003,54500гель410,2302,067,83013604-53050гель420,2502,047,83516003,03200гель430,2603,036,84229003,06100гель440,2703,026,86042003,07950гель450,2801,518,31059004,03600гель460,2901,58,31109903-44200гель470,3251.073,726360241800гель480,3251.573,2267003,52800гель490,3251.073,726364241460гель500,3251.573,2266993.52700гель510,3253,071,72816002,53890гель520,3255,069,72818002,04300гель530,3301,068,73640023,52300гель540,3301,568,2369103,53940гель550,3305,064,73618602,03650Гель плотный560,3501,548,24510003,52800гель570,3502,047,74518002,54100гель580,3503,046,74521001,55200гель590,3502,047,745,518102,53850гель

Продолжение таблицы 112345678910111213600,3502,047,74518002,53900гель610,3601,538,25810503,02410гель620,3701,528,26510804,02600гель630,3801,518,210511004,02450гель640,3901,58,211011503-42600гель650,5251,073,5264508,02600гель660,5253,071,52614004,03900гель670,5255,069,52614613,54350гель680,5301,068,5404607-82650гель690,5303,066,54114403,53100гель700,5305,064,54116003,03760гель710,5501,048,5485006,02500гель720,5501,548,0488005-5,53200гель730,5501,048,5484896,02300гель740,5501,548,0487955,53500гель750,5505,044,54821001,5-25600гель760,5506,043,55038000,57350гель770,5601,538,0618204,53200гель780,5701,528,07811004,04600гель790,5801,518,011512004,05200гель800,5901,58,012013003-43600гель810,7101,088,324320151580гель821,0101,088,037410152400гель831,0251,572,5416506,03400гель841,0501,547,5628706,04500гель85-901,09,0--0,5-камень860,1951,03,9--0,16-каменьПрототип870,1-1,098,921045-55осадок880,1-0,199,823565-70осадок

Таблица 2См. табл. 1 поз.Состав, мас.%Проницаемость по воде, мкм2Эффект изоляции, %Водорастворимый полимерАЦФЩелочьВодадо закачки составапосле закачки составаПААПЭОЕдкий натрЕдкий калийКаустич. сода100,052,01,596,451,20,0298120,055,01,593,451,50,00599,7160,05305,064,952,10,0498,1290,1-10-2,087,91,60100300,1-252,0--72,92,60,000499,98380,2-252,0--72,80,80100390,2-253,0--71,814,10,002199,99400,2-255,0--69,820,40100410,2302,0--67,816,30100500,325-1,5-73,215,10100600,3502,047,714,70,00499,97770,5601,538,015,60,00599,96800,5901,58,016,20100Прототип870,1--1,098,91,30,284,6880,10.199,83,50,877,1

Похожие патенты RU2293102C1

название год авторы номер документа
СОСТАВ ДЛЯ ГЛУШЕНИЯ СКВАЖИН 2007
  • Хасаев Рагим Ариф Оглы
  • Носков Андрей Борисович
  • Никифоров Василий Николаевич
  • Кузьмина Раиса Ивановна
  • Федусенко Ирина Валентиновна
RU2357996C1
СПОСОБ ВЫРАВНИВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНЫХ И ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩИХ СКВАЖИНАХ 2015
  • Мухамедьянов Фарит Фазитович
RU2597593C1
СПОСОБ РЕГУЛИРОВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ И ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩЕЙ СКВАЖИНЕ 2007
  • Ибатуллин Равиль Рустамович
  • Хисамов Раис Салихович
  • Хисаметдинов Марат Ракипович
  • Ганеева Зильфира Мунаваровна
  • Абросимова Наталья Николаевна
  • Яхина Ольга Александровна
RU2347897C1
ГЕЛЕОБРАЗУЮЩИЙ СОСТАВ ДЛЯ ИЗОЛЯЦИИ ВОДОПРИТОКА В СКВАЖИНУ 2004
  • Уваров Сергей Геннадьевич
  • Ганеева Зильфира Мунаваровна
  • Абросимова Наталья Николаевна
  • Ризванов Рафгат Зиннатович
  • Яхина Ольга Александровна
RU2277573C1
СПОСОБ РЕГУЛИРОВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ И СПОСОБ ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩЕЙ СКВАЖИНЕ 2005
  • Ибатуллин Равиль Рустамович
  • Уваров Сергей Геннадьевич
  • Хисаметдинов Марат Ракипович
  • Глумов Иван Фоканович
  • Слесарева Валентина Вениаминовна
  • Рахимова Шаура Газимьяновна
  • Хисамов Раис Салихович
RU2285785C1
СПОСОБ ВЫРАВНИВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ В НАГНЕТАТЕЛЬНЫХ СКВАЖИНАХ И ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩИХ СКВАЖИНАХ 2006
  • Хисамов Раис Салихович
  • Ибатуллин Равиль Рустамович
  • Хисаметдинов Марат Ракипович
  • Ганеева Зильфира Мунаваровна
  • Ризванов Рафгат Зиннатович
  • Кубарева Надежда Николаевна
  • Абросимова Наталья Николаевна
  • Яхина Ольга Александровна
RU2339803C2
СПОСОБ ВЫРАВНИВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНОЙ И ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩЕЙ СКВАЖИНАХ (ВАРИАНТЫ) 2009
  • Ибатуллин Равиль Рустамович
  • Амерханов Марат Инкилапович
  • Береговой Антон Николаевич
  • Золотухина Валентина Семеновна
  • Латыпов Рустам Рашидович
  • Рахимова Шаура Газимьяновна
  • Хисамов Раис Салихович
RU2382185C1
СПОСОБ РЕМОНТНО-ИЗОЛЯЦИОННЫХ РАБОТ В СКВАЖИНЕ 2017
  • Жиркеев Александр Сергеевич
  • Сахапова Альфия Камилевна
  • Хасанова Дильбархон Келамединовна
  • Вашетина Елена Юрьевна
RU2640854C1
СПОСОБ ВЫРАВНИВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ В НАГНЕТАТЕЛЬНЫХ И ОГРАНИЧЕНИЯ ВОДОПРИТОКОВ В ДОБЫВАЮЩИХ СКВАЖИНАХ 2000
  • Доброскок Б.Е.
  • Яковлев С.А.
  • Кандаурова Г.Ф.
  • Кубарева Н.Н.
  • Валеева Г.Х.
  • Мусабиров Р.Х.
  • Ганеева З.М.
  • Салихов И.М.
RU2169258C1
СПОСОБ ВЫРАВНИВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ В НАГНЕТАТЕЛЬНЫХ СКВАЖИНАХ И ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩИХ СКВАЖИНАХ 2008
  • Хисамов Раис Салихович
  • Ибатуллин Равиль Рустамович
  • Хисаметдинов Марат Ракипович
  • Ганеева Зильфира Мунаваровна
  • Абросимова Наталья Николаевна
  • Яхина Ольга Александровна
RU2375557C1

Реферат патента 2007 года СОСТАВ ДЛЯ ИЗОЛЯЦИИ ВОДОПРИТОКА В ДОБЫВАЮЩУЮ СКВАЖИНУ И РЕГУЛИРОВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНЫХ СКВАЖИН

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающую скважину и регулирования профиля приемистости нагнетательных скважин в слоисто-неоднородных и трещиноватых коллекторах. Технический результат - повышение прочностных и адгезионных свойств состава при одновременном получении однородной эластичной системы и обеспечении глубокого проникновения состава в высокопроницаемый пласт, более полного перекрытия поровых каналов и перераспределения на низкопроницаемые, неохваченные заводнением зоны, расширение диапазона гелеобразования состава, повышение его стабильности и расширение технологических возможностей состава. Состав для изоляции водопритока в добывающую скважину и регулирования профиля приемистости нагнетательных скважин, содержащий водорастворимый полимер, щелочь и воду, дополнительно содержит ацетоноформальдегидную смолу, в качестве полимера он содержит полиакриламид или полиэтиленоксид, в качестве щелочи он содержит едкий натр или калий или каустическую соду при следующем соотношении компонентов, мас.%: полиакриламид или полиэтиленоксид - 0,05-0,5, едкий натр или калий или каустическая сода - 1,0- 5,0, ацетоноформальдегидная смола - 2,0-90,0, вода - остальное. 2 табл.

Формула изобретения RU 2 293 102 C1

Состав для изоляции водопритока в добывающую скважину и регулирования профиля приемистости нагнетательных скважин, содержащий водорастворимый полимер, щелочь и воду, отличающийся тем, что дополнительно содержит ацетоноформальдегидную смолу, в качестве полимера он содержит полиакриламид или полиэтиленоксид, в качестве щелочи он содержит едкий натр, или калий, или каустическую соду при следующем соотношении компонентов, мас.%:

Полиакриламид или полиэтиленоксид0,05-0,5Едкий натр, или калий, или каустическая сода1,0-5,0Ацетоноформальдегидная смола2,0-90,0ВодаОстальное

Документы, цитированные в отчете о поиске Патент 2007 года RU2293102C1

ГОРБУНОВ А.Т., БУЧЕНКОВ Л.Н
Щелочное заводнение, Москва, Недра, 1989, с.42-48
Способ приготовления сырьевой смеси для тепловой изоляции 1987
  • Болдин Александр Борисович
  • Петров Александр Иванович
  • Киргизбаева Муяссархон Юсуфджановна
  • Абдуллаева Дильбар Улуговна
  • Аманов Ахатджан Абидович
  • Филончук Василий Карпович
  • Набиев Рафис Гарифович
SU1595853A1
Состав для закрепления преимущественно соленосных пород 1979
  • Пермяков Рудольф Сергеевич
  • Парфенов Артур Петрович
  • Сафрыгин Юрий Степанович
  • Яковлева Галина Васильевна
  • Муравьев Александр Васильевич
  • Травкина Валентина Ивановна
  • Борейко Валентина Мироновна
  • Шалаев Олег Вячеславович
  • Зотов Игорь Амвросьевич
SU883240A1
Полимерный тампонажный состав для изоляции зон поглощения 1988
  • Абдурахимов Низамидин
  • Джалилов Абдулахат Турапович
  • Файзиев Шухрат Гулаганович
  • Самигов Нигматджон Абдурахимович
  • Эркинов Абдухаким Содирович
  • Лыков Евгений Александрович
SU1620610A1
US 5071890 А, 10.12.1991
US 5022466 А, 11.06.1991.

RU 2 293 102 C1

Авторы

Ибатуллин Равиль Рустамович

Ризванов Рафгат Зиннатович

Ганеева Зильфира Мунаваровна

Абросимова Наталья Николаевна

Кубарева Надежда Николаевна

Фролов Александр Иванович

Фархутдинов Гумар Науфалович

Хисамутдинов Алик Исмагзамович

Михайлов Андрей Валерьевич

Яхина Ольга Александровна

Даты

2007-02-10Публикация

2005-09-26Подача