Предлагаемое изобретение относится к теплоэнергетике, а именно к использованию тепла дымовых газов котельных агрегатов и промышленных печей при нагреве воздуха, подаваемого на горение.
Известен способ нагрева воздуха дымовыми газами путем струйной подачи его на теплообменную поверхность в воздухоподогревателе, содержащем соединенные между собой и примыкающие к газоходу воздушные камеры, каждая из которых подключена к своему воздушному коллектору через перфорированную перегородку, установленную вдоль рабочей стенки (теплообменной поверхности) камеры на заданном расстоянии с отверстиями, расположенными в шахматном порядке [1].
Недостатками известного способа и устройства являются невозможность использования струйного распределения воздуха для повышения скорости теплообмена путем непосредственного контакта воздуха с дымовыми газами и их радиационного излучения, а также для снижения вредных примесей в дымовых газах, создание воздушными камерами промежуточного звена между дымовыми газами и системой подачи воздуха, наличие поверхности теплообмена, что увеличивает металлоемкость устройства и, соответственно, усложняет конструкцию и увеличивает коррозионный износ металла, увеличивает аэродинамическое сопротивление устройства, что снижает его надежность и эффективность.
Более близким по технической сущности к предлагаемому изобретению является способ нагрева воздуха продуктами сгорания (дымовыми газами), включающий передачу тепла нагреваемому воздуху, который подается в воздушный короб тангенциально с образованием цилиндрического вихря, от дымовых газов путем конвективной теплопередачи и радиации через теплообменную стенку короба, выполненную из металлической сетки, путем непосредственного контакта продольно двигающегося потока дымовых газов с воздушным цилиндрическим вихрем, осуществляемый в устройстве (рекуператоре), содержащем соосно установленные внутренний и наружный короба, образующие дымовой и воздушный каналы, разделенные теплообменной стенкой, выполненной из металлической сетки, причем воздушный короб снабжен тангенциально установленными входным и выходным патрубками [2].
Основными недостатками известного способа являются тангенциальный ввод и вывод воздуха в воздушную камеру, определяющий образование цилиндрического воздушного вихря в зоне контакта дымовых газов с воздушным потоком, образование газовых и воздушных вихрей на кромках ячеек сетки, обуславливающее интенсивное перемешивание газового и воздушного потоков и, соответственно, усреднение концентраций находящихся в них компонентов, отсутствие струйного распределения воздуха, уменьшающее поверхность контакта газового и воздушного потоков, что, в конечном счете, ограничивает температуру нагрева воздуха.
Основными недостатками известного устройства являются тангенциальное размещение входного и выходного воздушных патрубков, наличие теплообменной стенки, выполненной из металлической сетки, разделяющей газовый и воздушный короба и подверженной интенсивному коррозионному износу, отсутствие конструкций для струйного распределения воздуха, что снижает эффективность и надежность работы устройства.
Технической задачей, на решение которой направлено предлагаемое изобретение, является уменьшение перемешивания газового и воздушного потоков с одновременным увеличением температуры нагрева воздуха, а также повышение надежности и эффективности работы устройства.
Технический результат достигается тем, что предлагаемый способ включает в себя передачу тепла нагреваемому воздуху при непосредственном контакте с продольно двигающимся потоком дымовых газов путем конвективной теплопередачи и радиации, причем поток воздуха распределен на входе в газовый короб на плоские струи, движущиеся параллельно друг к другу и газовому потоку в одном направлении с ним и увлекая его за собой, которые по ходу движения несколько раз сжимают с образованием вторичной струи и собирают в один поток на выходе из газового короба.
Устройство, реализующее указанный способ, включает газовый короб, входной и выходной воздушные патрубки, причем на входе дымовых газов в газовый короб через его днище от коллектора холодного воздуха пропущены патрубки холодного воздуха, заканчивающиеся щелевыми соплами холодного воздуха, размещенными параллельно друг к другу и направленными в сторону движения дымовых газов, соосно напротив каждого сопла холодного воздуха устроены промежуточные ловушки-конфузоры с входными сечениями, аналогичными сечению плоской струи, заканчивающиеся щелевыми промежуточными соплами, направленными в сторону движения дымовых газов, а на выходе дымовых газов из газового короба напротив каждого промежуточного сопла помещен ряд ловушек горячего воздуха с входными сечениями, аналогичными сечению ловушки-конфузора, соединенных через патрубки горячего воздуха с коллектором горячего воздуха.
Способ реализуется в устройстве, которое изображено на фиг.1-4.
Устройство содержит газовый короб 1, в начале которого от коллектора холодного воздуха 2 через днище пропущены патрубки холодного воздуха 3, заканчивающиеся щелевыми соплами холодного воздуха 4, размещенными параллельно друг к другу и направленными в сторону движения дымовых газов, устроенные соосно напротив каждого сопла холодного воздуха 4 промежуточные ловушки-конфузоры 5, заканчивающиеся промежуточными щелевыми соплами 6, а в конце газового короба 1 помещен ряд ловушек горячего воздуха 7, размещенных аналогично промежуточным ловушкам-конфузорам 5 и соединенных через патрубки горячего воздуха 8 с коллектором горячего воздуха 9.
В основу прелагаемого способа положены свойства затопленной турбулентной струи воздуха, в частности плоской струи, которая, распространяясь в направлении истечения, перемешивается с окружающей газовой средой, причем перемешивание сопровождается вовлечением в воздушную струю масс газовой среды, сообщением периферийной части газовой среды движения, совпадающего с направлением струи. При этом, наряду с перемешиванием граничных слоев воздушной струи и газовой среды, происходит интенсивный теплообмен между ними, значительно превышающий скорость теплопередачи через стенку, так как в этом случае отсутствует термическое сопротивление стенки с загрязнениями и конвективный теплообмен осуществляется непосредственно между частицами воздуха и газа, а также начинает играть существенную роль лучистый теплообмен, что приводит к быстрому выравниванию температуры воздушной струи и газовой среды [3, с.326-339], [4, с.50-60]. Кроме того, частичное смешение воздуха с дымовыми газами и последующее использование полученной смеси для горения позволяет уменьшить содержание в дымовых газах NOx и SOx [5, с.457]. Для уменьшения перемешивания воздушной струи с дымовыми газами с одновременным обеспечением высокой температуры ее нагрева используется повторное сжатие одной и той же воздушной струи, что позволяет снизить градиент скорости на оси струи и, соответственно, примеси дымовых газов в ней [6, с.378].
Предлагаемый способ для нагрева воздуха дымовыми газами осуществляется в предлагаемом устройстве следующим образом. Дымовые газы при разрежении, соответствующем режиму работы котельного агрегата или промышленной печи, поступают в газовый короб 1, куда также вентилятором высокого давления по коллектору холодного воздуха 2 через входные патрубки 3 из щелевых сопел 4, количество которых выбирается исходя из условия создания устойчивых плоских струй со скоростью воздуха, достаточной для последующих сжатий и образования повторных струй, воздух подают в виде параллельных плоских струй, нагреваемых со всех сторон движущимися дымовыми газами, увлекаемыми этими струями, которые далее попадают в промежуточные ловушки-конфузоры 5. При этом в пограничных слоях происходит частичное перемешивание и вовлечение в воздушные струи некоторой части дымовых газов, интенсивный конвективный и лучистый теплообмен между дымовыми газами и воздухом и, соответственно, быстрый нагрев воздушных струй и охлаждение дымовых газов. Нагретые до промежуточной температуры и частично смешанные с дымовыми газами воздушные струи в промежуточных ловушках-конфузорах 5, расстояние до которых Х определяется исходя из условий обеспечения достаточной кинетической энергии струи для повторного сжатия и истечения повторных струй при заданном промежуточном смешении и соответствующей ему температуре нагрева, сжимаются и истекают из промежуточных сопел 6 в виде повторных плоских струй. При этом площади входных сечений ловушек-конфузоров 5 должны соответствовать заданному расходу воздуха при скорости струи на расстоянии от сопла X, а площади сечений промежуточных сопел 6 - созданию устойчивых повторных плоских струй со скоростью воздуха, меньшей первоначальной струи, но достаточной для последующего сжатия и истечения, которые взаимодействуют с дымовыми газами аналогично вышеописанному. Нагретые до требуемой температуры воздушные струи с некоторой примесью дымовых газов, количество которых задают из требуемой рециркуляции, попадают в прямоугольные входные отверстия ловушек горячих струй 7, расположенных аналогично ловушкам-конфузорам 5, с площадью, соответствующей расходу горячего воздуха при скорости входа струи в ловушки 7, откуда, через выходные патрубки 8 и коллектор горячего воздуха 9, воздух подают для проведения процесса горения в топку котельного агрегата или промышленную печь, а охлажденные дымовые газы выходят из газового короба 1 со скоростью большей, чем на входе в него, что обусловлено передачей им части энергии воздушных струй.
Эффективность предлагаемого способа и устройства можно проиллюстрировать на примере взаимодействия одной плоской струи воздуха с дымовыми газами.
Исходные данные:
Скорость движения дымовых газов в коробе 1, uн=10 м/с;
Скорость истечения воздуха из сопла 4, 6, uо=60 м/с;
Температура горячих дымовых газов, tг=170°C;
Температура холодного воздуха, tхв=25°С:
Концентрация дымовых газов в горячем воздухе - 20 об.%;
Ширина выходной щели сопла 4, 6, 2В=0,02 м.
Решение
Расчет параметров воздушной струи, концентрации в ней примеси (дымовых газов), температуры горячего воздуха проводили по уравнениям, приведенным в литературе [4, с.52-53], [6, с.374-380].
Нижние пределы длины струи
где
m=2,62; n=2,49 - комплексные коэффициенты.
Осевая температура струи на входе в ловушку 5, 7
где
θ0 - осевая температура струи на выходе из сопла 4, 6,°С.
Осевая скорость на входе в ловушку 5, 7
Изменение концентрации примеси дымовых газов в струе на расстоянии Х
где
- безразмерная концентрация воздуха в струе на расстоянии X;
, где
- безразмерное измененние скорости струи относительно газовой среды на расстоянии X;
где
где
- безразмерное изменение скорости струи на расстоянии X;
Результаты расчета при длине струи Х=0,15 м (Хmin(m)=0,137 м, Xmin(n)=0,124 м) приведены в табл.
Таким образом, при заданной концентрации дымовых газов в горячем воздухе (20 об.%) воздух можно нагреть от 25°С до 80°С (дымовые газы при этом охлаждаются от 170°С до 120°С), используя 4-кратное промежуточное сжатие струи.
Для аналогичных условий был проведен расчет нагрева воздушной струи от 25°С до 80°С без промежуточного сжатия. При этом были получены следующие результаты:
Длина струи, Х=0,32 м;
Концентрация дымовых газов - 42 об.%.
Сравнение результатов расчета показывает, что повторное сжатие воздушной струи позволяет в несколько раз снизить концентрацию примеси (дымовых газов) при одной и той же температуре нагрева воздуха.
Таким образом, предлагаемый способ нагрева воздуха дымовыми газами и устройство для его осуществления позволяют уменьшить перемешивание газового и воздушного потоков с одновременным увеличением температуры нагрева воздуха и, следовательно, повысить качество получаемого горячего воздуха, экологические показатели охлажденных дымовых газов, уменьшить коррозионный износ металла, снизить аэродинамическое сопротивление устройства и, в конечном счете, увеличить его надежность и эффективность.
Литература
1. А.с. СССР №964356, М кл. F 23 L 15/04,1982.
2. А.с. СССР №1370372, М кл. F 23 L 15/04, 1988.
3. А.Д.Альтшуль и др. Гидродинамика и аэродинамика. - М.: Стройиздат, 1983, 415 с.
4. И.А.Шепелев. Аэродинамика воздушных потоков в помещении. - М.: 4 Стройиздат, 1978, 145 с.
5. Г.М.Делягин и др. Теплогенерирующие установки. - М.: Стройиздат, 1986, 560 с.
6. Г.Н.Абрамович. Прикладная газовая динамика. - Наука, 1976, 888 с.
название | год | авторы | номер документа |
---|---|---|---|
КОНТАКТНЫЙ СТРУЙНЫЙ ВОЗДУХОПОДОГРЕВАТЕЛЬ | 2007 |
|
RU2362090C1 |
ПОЛИФУНКЦИОНАЛЬНЫЙ СТРУЙНЫЙ ВОЗДУХОПОДОГРЕВАТЕЛЬ | 2006 |
|
RU2307288C1 |
КОМПЛЕКСНОЕ УСТРОЙСТВО ДЛЯ НАГРЕВА ВОЗДУХА И ОЧИСТКИ ДЫМОВЫХ ГАЗОВ | 2007 |
|
RU2362091C1 |
ДЫМОВСАСЫВАЮЩИЙ СТРУЙНЫЙ ВОЗДУХОПОДОГРЕВАТЕЛЬ | 2002 |
|
RU2230258C1 |
РЕКУПЕРАТИВНАЯ ГОРЕЛКА ДЛЯ ГАЗООБРАЗНОГО ТОПЛИВА | 2008 |
|
RU2378573C1 |
Глушитель шума выхлопа | 1985 |
|
SU1268756A1 |
Устройство для нагрева воздуха | 2017 |
|
RU2680283C1 |
ВОДОГРЕЙНЫЙ ТВЕРДОТОПЛИВНЫЙ КОТЕЛ | 2007 |
|
RU2363888C1 |
ВОДОГРЕЙНЫЙ КОТЕЛ | 2010 |
|
RU2418246C1 |
СПОСОБ УДАЛЕНИЯ ТВЕРДЫХ ШЛАКОВ ИЗ УГОЛЬНОГО КОТЛА И ИЗВЛЕЧЕНИЯ ИЗ НИХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2453769C1 |
Изобретение относится к теплоэнергетике, а именно к использованию тепла дымовых газов котельных агрегатов и промышленных печей при нагреве воздуха, подаваемого на горение. Техническая задача изобретения - уменьшение перемешивания газового и воздушного потоков с одновременным увеличением температуры нагрева воздуха и повышением надежности и эффективности работы устройства. Технический результат достигается тем, что способ включает в себя передачу тепла нагреваемому воздуху при непосредственном контакте с продольно двигающемся потоком дымовых газов путем конвективной теплопередачи и радиации, причем поток воздуха распределен на входе в газовый короб на плоские струи, движущиеся параллельно друг к другу и газовому потоку в одном направлении с ним и увлекая его за собой, которые по ходу движения несколько раз сжимают с образованием вторичной струи и собирают в один поток на выходе из газового короба. Способ реализуется в устройстве, содержащем газовый короб, в начале которого, от коллектора холодного воздуха, через днище пропущены патрубки холодного воздуха, заканчивающиеся щелевыми соплами холодного воздуха, размещенными параллельно друг к другу и направленными в сторону движения дымовых газов, устроенные соосно напротив каждого сопла холодного воздуха, промежуточные ловушки-конфузоры, заканчивающиеся промежуточными щелевыми соплами, а в конце газового короба помещен ряд ловушек горячего воздуха, размещенных аналогично промежуточным ловушкам-конфузорам и соединенным через патрубки горячего воздуха с коллектором горячего воздуха. 2 н.п. ф-лы, 1 табл., 4 ил.
Воздухоподогреватель | 1980 |
|
SU964356A1 |
Рекуператор | 1989 |
|
SU1657878A2 |
ПАНЕЛЬНЫЙ СТРУЙНЫЙ ВОЗДУХОПОДОГРЕВАТЕЛЬ | 1990 |
|
RU2008567C1 |
Воздухоподогреватель | 1988 |
|
SU1651035A1 |
US 4445842 A, 01.05.1984. |
Авторы
Даты
2007-02-27—Публикация
2003-10-22—Подача