УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ ПРОЧНОСТИ ЦЕНТРИФУГИРОВАННОГО БЕТОНА В ПРОТЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ Российский патент 2007 года по МПК G01N29/04 

Описание патента на изобретение RU2296987C1

Изобретение относится к способам неразрушающего контроля прочности центрифугированного бетона эксплуатируемых предварительно напряженных железобетонных конструкций, преимущественно напряженных свай-оболочек, пролетных строений мостов, путепроводов, гидротехнических сооружений, опор ЛЭП и других протяженных конструкций с напряжением арматуры в одном направлении и постоянно сжатых зонах.

Известен способ неразрушающего контроля прочности бетонов, включающий определение усилия вырыва анкерного устройства из бетона и определение по усилию вырыва прочности бетона (метод отрыва со скалыванием) (см., например, ГОСТ 22690-88. Бетоны. Определение прочности механическими методами неразрушающего контроля. - М.: Издательство стандартов, 1988, С.2...9).

Недостатком описанного способа является ограничение по его использованию в густоармированных и тонкостенных конструкциях, прочность бетона глубинных слоев определяется глубиной заделки анкерного устройства и значительная трудоемкость проведения измерения.

Известен ультразвуковой способ контроля прочности бетона путем поверхностного прозвучивания контролируемого изделия или конструкции (см. Почтовик Г.Я. и др. Методы и средства испытания строительных конструкций. М.: Высшая школа, 1973, с.71, рис.42).

Наиболее существенным недостатком этого способа при контроле прочности поврежденного бетона предварительно напряженных железобетонных конструкций является недостаточная точность контроля прочности бетона, обусловленная отсутствием предварительно установленных для каждой конструкции и для каждого периода измерений при принятом направлении прозвучивания градуировочных зависимостей время-прочность. Установить такие зависимости для эксплуатируемых конструкций практически невозможно. Кроме того, при этом способе контроля у предварительно напряженных конструкций отсутствует связь между прочностью поврежденного бетона и временем распространения ультразвука при прозвучивании в направлении, параллельном расположению предварительно напряженной арматуры.

Наиболее близким по технической сущности к изобретению является ультразвуковой способ контроля прочности центрифугированного бетона в протяженных железобетонных конструкциях в процессах эксплуатации, включающий поверхностное прозвучивание конструкции ультразвуком в продольном и поперечном направлениях, измерение времени прохождения ультразвука в указанных направлениях и расчетное определение прочности бетона (см. Патент №2029299 (RU) C1, МПК7 G 01 N 29/00. Ультразвуковой способ контроля прочности центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации / Подольский В.И. (RU). - Заявка №5028786/28; Заявлено 21.02.92; Опубл. 20.02.95).

Однако отмеченный способ ультразвукового контроля прочности поврежденного центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации не учитывает влажность бетона в поперечном и продольном направлениях по отношению к направлению предварительно напряженной арматуры.

Сущность заявленного изобретения заключается в следующем.

Задача, на решение которой направлено заявленное изобретение, - создание ультразвукового способа контроля прочности поврежденного центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации, учитывающего влажность бетона в поперечном и продольном направлениях по отношению к направлению предварительно напряженной арматуры.

Технический результат - повышение точности и надежности определения прочности поврежденного центрифугированного влажного бетона в протяженных железобетонных конструкциях в процессе эксплуатации.

Указанный технический результат достигается тем, что в известном ультразвуковом способе контроля прочности центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации, включающем поверхностное прозвучивание конструкции ультразвуком в продольном и поперечном направлениях, измерение времени прохождения ультразвука в указанных направлениях и расчетное определение прочности бетона, согласно изобретению определяют среднюю влажность бетона в поперечном направлении к направлению предварительно напряженной арматуры и устанавливают среднюю влажность бетона в продольном направлении вдоль расположения предварительно напряженной арматуры, а искомую прочность бетона рассчитывают из выражения

где Rп - прочность поврежденного бетона, кгс/см2;

Rнп - прочность бетона в эталонном образце, кгс/см2;

К - коэффициент условий работы конструкции: 0,9-1,0;

А и В - коэффициенты, характеризующие изменение прочности бетона конструкции в зависимости от отношения времени распространения ультразвука в поперечном направлении к направлению предварительно напряженной арматуры ко времени распространения ультразвука в продольном направлении вдоль расположения предварительно напряженной арматуры: для центрифугированного бетона - А=2,65; В=1,65;

tпоп - среднее время распространения ультразвука в поперечном направлении конструкции, мкс;

tпрод - среднее время распространения ультразвука в продольном направлении конструкции, мкс;

Wпрод - средняя влажность бетона в продольном направлении конструкции, % (по массе);

Wпоп - средняя влажность бетона в поперечном направлении конструкции, % (по массе).

Изобретение поясняется иллюстрированным материалом.

На фиг.1 представлены зависимости скорости распространения ультразвука в экспериментальных бетонных образцах от их влажности (зависимость 1 для бетона класса В 12,5 по прочности на сжатие; зависимость 2 - для класса В 22,5; зависимость 3 - для касса В 25; зависимость 4 - для класса В 35...40).

На фиг.2 - зависимость интегрального показателя - относительного параметра скорости распространения ультразвука в бетонах класса В 12,5...В 40 по прочности на сжатие от их влажности.

Заявленный способ реализуют следующим образом.

Кривые на фиг.1 описываются уравнением степенной функции следующего вида

где Сj - скорость распространения УЗК в бетоне при W>0%, м/с;

С0 - скорость распространения УЗК в бетоне при W=0% (для бетонов класса В 12,5...В 40 по прочности на сжатие, С0 изменяется соответственно в пределах 4050...4600 м/с;

2,85 и 3,2 - эмпирические коэффициенты, полученные в результате математической обработки экспериментальных данных;

W - влажность бетона, % (по массе).

Коэффициент корреляции данной зависимости (2) составляет К=0,997.

График на фиг.2 описывается уравнением возрастающей степенной функции

где С0 - скорость распространения УЗК в бетоне при W=0%, м/с;

Cj - скорость распространения УЗК в бетоне при W>0%, м/с;

W - влажность бетона, % (по массе);

0,00065 и 3,2 - эмпирические коэффициенты, установленные в результате исследований.

Коэффициент корреляции полученной зависимости (3) составляет К=0,994.

Для определения прочности центрифугированного бетона (Rп) с учетом его влажности в эксплуатируемых протяженных железобетонных конструкциях по результатам экспериментальных и теоретических исследований получена следующая регрессивная модель

где Rп - прочность поврежденного бетона, кгс/см2;

Rнп - прочность бетона в эталонном образце, кгс/см2;

К - коэффициент условий работы конструкции: 0,9-1,0;

А и В - коэффициенты, характеризующие изменение прочности бетона конструкции в зависимости от отношения времени распространения ультразвука в поперечном направлении к направлению предварительно напряженной арматуры ко времени распространения ультразвука в продольном направлении вдоль расположения предварительно напряженной арматуры: для центрифугированного бетона - А=2,65; В=1,65;

tпоп - среднее время распространения ультразвука в поперечном направлении конструкции, мкс;

tпрод - среднее время распространения ультразвука в продольном направлении конструкции, мкс;

Wпрод - средняя влажность бетона в продольном направлении конструкции, % (по массе);

Wпоп - средняя влажность бетона в поперечном направлении конструкции, % (по массе).

Коэффициент корреляции данной модели составляет 0,95.

Сведения, подтверждающие возможность реализации заявленного способа заключаются в следующем.

Заявленный ультразвуковой способ контроля прочности центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации осуществляют следующим образом.

Измеряют время распространения ультразвука и устанавливают влажность бетона не менее чем в десяти участках контролируемой зоны конструкции в поперечном и продольном направлениях к направлению предварительно напряженной арматуры, определяют прочность бетона в эталонном образце. Затем определяют среднее значение отношения времени распространения ультразвука в поперечном направлении к направлению предварительно напряженной арматуры к времени распространения ультразвука в продольном направлении по отношению к направлению предварительно напряженной арматуры, устанавливают значения средней влажности бетона в поперечном и продольном направлениях конструкции и после этого рассчитывают прочность поврежденного бетона из выражения

где Rп - прочность поврежденного бетона, кгс/см2;

Rнп - прочность бетона в эталонном образце, кгс/см2;

К - коэффициент условий работы конструкции: 0,9-1,0;

А и В - коэффициенты, характеризующие изменение прочности бетона конструкции в зависимости от отношения времени распространения ультразвука в поперечном направлении к направлению предварительно напряженной арматуры ко времени распространения ультразвука в продольном направлении вдоль расположения предварительно напряженной арматуры: для центрифугированного бетона - А=2,65; В=1,65;

tпоп - среднее время распространения ультразвука в поперечном направлении конструкции, мкс;

tпрод - среднее время распространения ультразвука в продольном направлении конструкции, мкс;

Wпрод - средняя влажность бетона в продольном направлении конструкции, % (по массе);

Wпоп - средняя влажность бетона в поперечном направлении конструкции, % (по массе).

Отличительными признаками предложенного ультразвукового способа контроля прочности поврежденного центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации являются измерения влажности бетона в двух направлениях: в поперечном направлении к направлению предварительно напряженной арматуры и в продольном направлении вдоль предварительно напряженной арматуры.

Пример. На участке электрифицированной железной дороги установлены опоры типа СЖБК мощностью 6,0 тс·м, расчетное сопротивление бетона сжатию 175 кгс/см2. Опоры находятся в эксплуатации более 30 лет. Основные повреждения бетона накапливались в надземной части опор. Начальная кубиковая прочность бетона одной из опор (эталонного образца), определенная методом поверхностного прозвучивания в подземной части, находившейся в стационарных условиях и не имевшей повреждений, составила 726 кгс/см2.

Измерения среднего времени распространения ультразвука на поврежденном бетоне конструкции с помощью прибора УК-14ПМ на базе 120 мм дали следующие результаты: в поперечном к направлению напряженной арматуры направлении tпоп=40 мкс, в продольном по отношению к арматуре направлении - tпрод=27 мкс.

Средняя влажность бетона в поперечном направлении конструкции составляет Wпоп=4% (по массе), средняя влажность бетона в продольном направлении конструкции Wпрод=3%.

Коэффициент условий работы конструкции опоры К=1,0.

Прочность поврежденного бетона (кубиковая) конструкции опоры, определенная по приведенной зависимости (5), составила:

Призменная прочность поврежденного бетона опоры

Rпр=95-0,72=68 кгс/см2<175 кгс/см2.

На основании этого пришли к выводу о недостаточной несущей способности опоры и ее заменили.

Прочность поврежденного бетона (кубиковая) этой же опоры, определенная по формуле в соответствии с прототипом (см. Патент №2029299 (RU) С 1, МПК7 G 01 N 29/00 Ультразвуковой способ контроля прочности центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации / Подольский В.И. (RU). Заявка №5028786/28; Заявлено 21.02.92; Опубл. 20.02.95), составляет

Погрешность при определении прочности поврежденного бетона опоры (без учета его влажности) по прототипу (Патент №2089299) при этом составила

Предложенный ультразвуковой способ контроля прочности центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации в увлажненной среде позволяет снизить погрешность измерений до 1...5%.

Похожие патенты RU2296987C1

название год авторы номер документа
УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ ПРОЧНОСТИ ЦЕНТРИФУГИРОВАННОГО БЕТОНА В ПРОТЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ 2006
  • Алимова Мария Олеговна
  • Карпунин Никита Васильевич
  • Алимов Анатолий Георгиевич
  • Карпунин Василий Валентинович
RU2298181C1
УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ ПРОЧНОСТИ ЦЕНТРИФУГИРОВАННОГО БЕТОНА В ПРОТЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ 1992
  • Подольский В.И.
RU2029299C1
УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ МОДУЛЯ УПРУГОСТИ БЕТОНА В БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ СООРУЖЕНИЙ 2010
  • Алимов Анатолий Георгиевич
  • Карпунин Василий Васильевич
  • Часовской Павел Васильевич
  • Карпунин Андрей Васильевич
  • Селин Дмитрий Валентинович
RU2442153C2
УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ ПРОЧНОСТИ БЕТОНА В БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ 2004
  • Алимов А.Г.
  • Карпунин В.В.
  • Карпунин В.В.
  • Алимов А.А.
  • Сердюков Д.А.
RU2262687C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДОЛГОВЕЧНОСТИ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ 2004
  • Алимов Анатолий Георгиевич
  • Карпунин Василий Валентинович
  • Карпунин Василий Васильевич
  • Алимов Александр Анатольевич
RU2272281C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ТОЛЩИНЫ ПОВРЕЖДЕННОГО СЛОЯ БЕТОНА В ЭКСПЛУАТИРУЕМЫХ КОНСТРУКЦИЯХ СООРУЖЕНИЙ 2004
  • Алимов А.Г.
  • Карпунин В.В.
RU2262693C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДОЛГОВЕЧНОСТИ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ 2006
  • Алимов Анатолий Георгиевич
  • Карпунин Василий Валентинович
  • Часовской Павел Васильевич
RU2298179C1
УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ СООРУЖЕНИЙ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ НА НАЛИЧИЕ ГЛУБОКИХ ТРЕЩИН 2004
  • Алимов А.Г.
  • Карпунин В.В.
RU2262695C1
УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ ТОЛЩИНЫ ПОВРЕЖДЕННОГО СЛОЯ БЕТОНА В ЭКСПЛУАТИРУЕМЫХ КОНСТРУКЦИЯХ СООРУЖЕНИЙ 2005
  • Алимов Анатолий Георгиевич
  • Карпунин Василий Валентинович
RU2277240C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ СООРУЖЕНИЙ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ НА НАЛИЧИЕ ГЛУБОКИХ ТРЕЩИН 2005
  • Алимов Анатолий Георгиевич
  • Карпунин Василий Валентинович
RU2279069C1

Иллюстрации к изобретению RU 2 296 987 C1

Реферат патента 2007 года УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ ПРОЧНОСТИ ЦЕНТРИФУГИРОВАННОГО БЕТОНА В ПРОТЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ

Использование: для контроля прочности центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации. Сущность: заключается в том, что осуществляют поверхностное прозвучивание конструкции ультразвуком в продольном и поперечном направлениях, измеряют время прохождения ультразвука и определяют среднюю влажность бетона в поперечном и продольном направлениях по отношению к направлению напряженной арматуры, а искомую прочность бетона рассчитывают по определенной математической формуле. Технический результат: повышение точности и надежности определения прочности центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации. 2 ил.

Формула изобретения RU 2 296 987 C1

Ультразвуковой способ контроля прочности центрифугированного бетона в протяженных железобетонных конструкциях в процессе эксплуатации, включающий поверхностное прозвучивание конструкции ультразвуком в продольном и поперечном направлениях, измерение времени прохождения ультразвука в указанных направлениях и расчетное определение прочности бетона, отличающийся тем, что определяют среднюю влажность бетона в поперечном направлении к направлению предварительно напряженной арматуры и устанавливают среднюю влажность бетона в продольном направлении вдоль расположения предварительно напряженной арматуры, а искомую прочность бетона рассчитывают из выражения

где Rп - прочность поврежденного бетона, кгс/см2;

Rнп - прочность бетона в эталонном образце, кгс/см2;

К - коэффициент условий работы конструкции, 0,9-1,0;

А и В - коэффициенты, характеризующие изменение прочности бетона конструкции в зависимости от отношения времени распространения ультразвука в поперечном направлении к направлению предварительно напряженной арматуры ко времени распространения ультразвука в продольном направлении вдоль расположения предварительно напряженной арматуры: для центрифугированного бетона А=2,65; В=1,65;

tпоп - среднее время распространения ультразвука в поперечном направлении конструкции, мкс;

tпрод - среднее время распространения ультразвука в продольном направлении конструкции, мкс;

Wпрод - средняя влажность бетона в продольном направлении конструкции, % (по массе);

Wпоп - средняя влажность бетона в поперечном направлении конструкции, % (по массе).

Документы, цитированные в отчете о поиске Патент 2007 года RU2296987C1

УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ ПРОЧНОСТИ ЦЕНТРИФУГИРОВАННОГО БЕТОНА В ПРОТЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ 1992
  • Подольский В.И.
RU2029299C1
Способ определения прочности бетонной закладки и устройство для его осуществления 1978
  • Байконуров Омирхан Аймагамбетович
  • Мельников Виктор Алексеевич
  • Сарсенбаев Мурат Мирзаханович
SU734550A1
Способ определения прочности бетона в изделиях 1976
  • Репьев Эрнст Никифорович
  • Воронов Юрий Николаевич
SU616580A1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ПРОЧНОСТИ БЕТОНА В КОНСТРУКЦИЯХ И СООРУЖЕНИЯХ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ 2004
  • Алимов А.Г.
  • Карпунин В.В.
RU2262692C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ПРОЧНОСТИ БЕТОНА В ЭКСПЛУАТИРУЕМЫХ КОНСТРУКЦИЯХ СООРУЖЕНИЙ 2004
  • Алимов А.Г.
  • Карпунин В.В.
RU2260182C1
JP 2000180425 А, 30.06.2000
JP 4276546 A, 01.10.1992
JP 58066849 A, 21.04.1983.

RU 2 296 987 C1

Авторы

Алимов Анатолий Георгиевич

Карпунин Василий Валентинович

Карпунин Никита Васильевич

Алимова Мария Олеговна

Даты

2007-04-10Публикация

2006-01-10Подача