СПОСОБ ПОВЫШЕНИЯ ПРОНИЦАЕМОСТИ ПЛАСТОВ-КОЛЛЕКТОРОВ Российский патент 2007 года по МПК E21B28/00 E21B43/16 G01V1/40 

Описание патента на изобретение RU2304211C2

Предлагаемое изобретение относится к области геофизики, в частности к геофизическим методам повышения нефтеотдачи пласта, и может быть использовано в скважинах, дебит которых со временем их эксплуатации существенно снизился.

Известен способ виброакустического воздействия на пласт с использованием магнитострикционных, пьезокерамических и электроискровых преобразователей, имеющих высокий коэффициент преобразования электрической энергии в мощность упругой волны [1].

Основным недостатком этого метода является неэффективность использования его самостоятельно и необходимость применения химических растворителей для обработки пласта. Кроме того, необходим тщательный подбор скважины с учетом остаточной нефтенасыщенности продуктивных пород, изучение причин снижения или увеличения обводненности скважины (отложения, депрессии, прорыв воды по пласту или затрубному пространству и т.д.).

Наиболее близким к предлагаемому способу повышения проницаемости пластов является способ, основанный на подаче в скважину жидкости и воздействие ударными волнами с передачей их по жидкостному волноводу в скважине с последующим поворотом волны от отражателя в пласт [2].

При использования этого способа воздействие ударными волнами в течение нескольких часов может происходить в пласт, который изначально обладал низкой проницаемостью и не представлялся отдельно как перспективный на нефтеотдачу. В этом случае воздействие ведет к повышению энергозатрат и длительности проводимой операции, а эффект воздействия может быть минимальным вплоть до его отсутствия.

Целью предлагаемого изобретения является повышение нефтеотдачи пластов-коллекторов за счет установки отражателя в интервале наиболее проницаемой части пласта.

Предлагаемый способ повышения проницаемости пластов-коллекторов в скважинах основывается на следующих факторах.

Источником акустических колебаний в пласте-коллекторе может быть каждая из компонент, заполняющих твердый скелет породы (нефть с газовым фактором, вода). Насыщающие пласт вода и нефть с газовым фактором генерируют акустические колебания в процессе дегазации нефти и пульсаций скорости движения фильтрационного потока. В проницаемом пласте-коллекторе эти процессы уверенно регистрируются тремя ортогонально расположенными датчиками, позволяющими определить преобладающее направление (вертикальное или горизонтальное) движения флюида. В случае кольматации или низкой проницаемости пласта интенсивность геоакустических сигналов будет минимальной.

Таким образом, выбор глубины установки отражателя перед воздействия ударными волнами будет определяться особенностями проницаемости пласта-коллектора, выявленной по трехкомпонентным измерениям геоакустических сигналов, при помощи трех датчиков, ось чувствительности первого из которых совпадает с осью скважины, а оси чувствительности второго и третьего датчиков направлены перпендикулярно к ней.

Способ осуществляется следующим образом:

В скважине размещают приемник геоакустических сигналов. Измерения на указанной глубине в интервале перфорации пласта-коллектора производятся в течение определенного интервала времени, после чего приемник геоакустических сигналов перемещается вверх или вниз по стволу скважины с заданным шагом измерений, например 0,5 или 1 м.

Для определения наиболее проницаемой части пласта-коллектора вычисляют отношение сигналов с трех датчиков. Если отношение сигналов с вертикального датчика Z к сигналам с горизонтальных датчиков Х и Y меньше единицы, а отношение сигналов с горизонтальных датчиков Х и Y не равно единице, то в этом случае можно утверждать, что идет движение флюида по пласту. Эти отношения строятся в виде графиков и отражают интенсивность движения по проницаемой части пласта-коллектора.

На чертеже приведены графики 2, 3 результатов исследований данным способом в нефтяной скважине Ставропольского края. Во вскрытом перфорацией пласте-коллекторе (чертеж, позиция 1) по параметрам геоакустических сигналов, регистрируемых тремя ортогонально расположенными датчиками, выделяют участки с разной проницаемостью.

Наиболее проницаемый участок (а) пласта-коллектора находится в интервале глубин 3566-3569 м. Здесь отношение сигналов с вертикального датчика Z к сигналам с горизонтального датчика Х (график 2) меньше единицы, то есть преобладает интенсивное горизонтальное движение флюида по пласту за счет его проницаемости. Отношение сигналов с горизонтальных датчиков Х и Y значительно отличается от единицы (график 3), что также свидетельствует об интенсивном горизонтальном движении флюида по пласту. Менее проницаемый участок (б) расположен в интервале глубин 3571-3573 м. Величины отношений сигналов с трех датчиков отличаются от зафиксированных на участке (а). Слабой проницаемостью обладают вскрытые перфорацией участки пласта-коллектора в интервалах 3569-3571 м и 3573-3580 м.

Интенсивная обработка ударными волнами пласта-коллектора при установке отражателя на участках а и б позволила в 2,5 раза увеличить дебит скважины (до волнового воздействия он был 20 т/сут, после - 50,4 т/сут).

Для определения наиболее проницаемой части пласта-коллектора вычисляют отношение сигналов с трех датчиков. Если отношение сигналов с вертикального датчика Z к сигналам с горизонтальных датчиков Х и Y меньше единицы, а отношение сигналов с горизонтальных датчиков Х и У не равно единице, то в этом случае можно утверждать, что идет движение флюида по пласту. Эти отношения строятся в виде графиков и отражают интенсивность движения по проницаемой части пласта-коллектора.

На чертеже приведены графики 2, 3 результатов исследований данным способом в нефтяной скважине Ставропольского края. Во вскрытом перфорацией пласте-коллекторе (чертеж, позиция 1) по параметрам геоакустических сигналов, регистрируемых тремя ортогонально расположенными датчиками, выделяют участки с разной проницаемостью.

Наиболее проницаемый участок (а) пласта-коллектора находится в интервале глубин 3566-3569 м. Здесь отношение сигналов с вертикального датчика Z к сигналам с горизонтального датчика Х (график 2) меньше единицы, то есть преобладает интенсивное горизонтальное движение флюида по пласту за счет его проницаемости. Отношение сигналов с горизонтальных датчиков Х и Y значительно отличается от единицы (график 3), что также свидетельствует об интенсивном горизонтальном движении флюида по пласту. Менее проницаемый участок (б) расположен в интервале глубин 3571-3573 м. Величины отношений сигналов с трех датчиков отличаются от зафиксированных на участке (а). Слабой проницаемостью обладают вскрытые перфорацией участки пласта-коллектора в интервалах 3569-3571 м и 3573-3580 м.

Интенсивная обработка ударными волнами пласта-коллектора при установке отражателя на участках а и б позволила в 2,5 раза увеличить дебит скважины (до волнового воздействия он был 20 т/сут, после - 50,4 т/сут).

Источники инфоримации

1. Герштанский О.С. Опыт применения акустического воздействия на призабойную зону проницаемых пород на месторождениях Западного Казахстана. НТВ "Каротажник", Изд-во ГЕРС, Тверь, 1998 г., вып.48, с.76-80.

2. А.с. СССР №1701896, кл. Е21В 43/28, опублик. Бюл.48, 1991 г. (прототип).

Похожие патенты RU2304211C2

название год авторы номер документа
СПОСОБ ОБРАБОТКИ ИМПУЛЬСНЫМ ВОЗДЕЙСТВИЕМ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ 2006
  • Зарипов Фанил Роменович
  • Кореняко Анатолий Васильевич
  • Кондратьев Александр Сергеевич
RU2310059C1
Способ интенсификации притоков углеводородов из глиносодержащих сложнопостроенных нефтематеринских пород 2021
  • Хабаров Владимир Васильевич
  • Ракичинский Владимир Николаевич
  • Морозов Василий Юрьевич
  • Тимчук Александр Станиславович
  • Хабаров Алексей Владимирович
RU2777004C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО ПЛАСТА ГОРИЗОНТАЛЬНЫМИ СКВАЖИНАМИ 2014
  • Хисамов Раис Салихович
  • Ахметгареев Вадим Валерьевич
  • Газизов Ильгам Гарифзянович
  • Шариков Геннадий Нестерович
RU2544204C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО ПЛАСТА СКВАЖИНАМИ С ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ 2014
  • Хисамов Раис Салихович
  • Ахметгареев Вадим Валерьевич
  • Газизов Ильгам Гарифзянович
  • Ахмадуллин Рустам Хамзович
  • Гафиятуллин Халил Хафизович
  • Емельянов Виталий Владимирович
RU2540720C1
СПОСОБ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ МНОГОПЛАСТОВОГО МЕСТОРОЖДЕНИЯ УГЛЕВОДОРОДОВ 2005
  • Трофимов Александр Сергеевич
  • Леонов Василий Александрович
  • Алпатов Александр Андреевич
  • Бердников Сергей Валерьевич
  • Гарипов Олег Марсович
  • Давиташвили Гочи Иванович
  • Кривова Надежда Рашитовна
  • Леонов Илья Васильевич
RU2315863C2
СПОСОБ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ УГЛЕВОДОРОДОВ 2005
  • Трофимов Александр Сергеевич
  • Леонов Василий Александрович
  • Кривова Надежда Рашитовна
  • Зарубин Андрей Леонидович
  • Сайфутдинов Фарид Хакимович
  • Галиев Фатых Фаритович
  • Платонов Игорь Евгеньевич
  • Леонов Илья Васильевич
RU2292453C2
СПОСОБ ОБРАБОТКИ НЕФТЯНОГО ПЛАСТА 2013
  • Калинин Олег Борисович
  • Замахаев Виктор Сергеевич
RU2519093C1
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЛЬТРАЦИОННЫХ ПАРАМЕТРОВ СЛОЖНОПОСТРОЕННЫХ КОЛЛЕКТОРОВ И МНОГОПЛАСТОВЫХ ОБЪЕКТОВ 2005
  • Федоров Вячеслав Николаевич
  • Мешков Василий Михайлович
  • Клюкин Сергей Сергеевич
  • Лушпеев Владимир Александрович
RU2290507C2
СПОСОБ НЕСТАЦИОНАРНОГО ИЗВЛЕЧЕНИЯ НЕФТИ ИЗ ПЛАСТА 2004
  • Белов Владимир Григорьевич
  • Горшенин Андрей Юрьевич
  • Иванов Владимир Анатольевич
  • Козловский Владимир Сергеевич
  • Мусаев Хасан Цицоевич
  • Федосеев Анатолий Иванович
  • Шелехов Александр Леонидович
RU2288352C2
СПОСОБ ОБНАРУЖЕНИЯ ГАЗОНАСЫЩЕННЫХ ПЛАСТОВ В СКВАЖИНАХ 2007
  • Троянов Александр Кузьмич
  • Астраханцев Юрий Геннадиевич
  • Новиков Сергей Сергеевич
RU2344285C1

Реферат патента 2007 года СПОСОБ ПОВЫШЕНИЯ ПРОНИЦАЕМОСТИ ПЛАСТОВ-КОЛЛЕКТОРОВ

Изобретение относится к области геофизики, в частности к геофизическим методам повышения нефтеотдачи пласта, и может быть использовано в скважинах, дебит которых со временем их эксплуатации существенно снизился. Обеспечивает повышение нефтеотдачи пластов-коллекторов за счет установки отражателя в интервале наиболее проницаемой части пласта. Сущность изобретения: по способу подают в скважину жидкость и воздействуют ударными волнами с передачей их по жидкостному волноводу скважины с последующим поворотом волны от отражателя в пласт. Согласно изобретению до воздействия проводят измерения геоакустических сигналов в интервале пласта тремя ортогонально расположенными датчиками. Ось чувствительности первого из которых совпадает с осью скважины. Оси второго и третьего датчиков направлены перпендикулярно к ней. Вычисляют отношения сигналов с трех датчиков и строят графики. Если отношение сигналов с вертикального датчика к сигналам с горизонтальных датчиков меньше единицы, а отношение сигналов с горизонтальных датчиков не равно единице, по графикам определяют интервалы глубин наиболее проницаемой части пласта, затем на той же глубине в скважине устанавливают отражатель. Осуществляют воздействие ударными волнами. 1 ил.

Формула изобретения RU 2 304 211 C2

Способ повышения проницаемости пластов-коллекторов, включающий подачу в скважину жидкости и воздействие ударными волнами с передачей их по жидкостному волноводу скважины с последующим поворотом волны от отражателя в пласт, отличающийся тем, что до воздействия проводят измерения геоакустических сигналов в интервале пласта тремя ортогонально расположенными датчиками, ось чувствительности первого из которых совпадает с осью скважины, а оси чувствительности второго и третьего датчиков направлены перпендикулярно к ней, вычисляют отношения сигналов с трех датчиков и строят графики, при этом, если отношение сигналов с вертикального датчика к сигналам с горизонтальных датчиков меньше единицы, а отношение сигналов с горизонтальных датчиков не равно единице, по графикам определяют интервалы глубин наиболее проницаемой части пласта, затем на той же глубине в скважине устанавливают отражатель и осуществляют воздействие ударными волнами.

Документы, цитированные в отчете о поиске Патент 2007 года RU2304211C2

Способ повышения проницаемости горных пород на месте залегания и устройство для его осуществления 1989
  • Бажал Анатолий Игнатьевич
  • Зюган Анатолий Иванович
  • Маслов Александр Дмитриевич
  • Цывинда Наталья Ивановна
  • Сухоруких Александр Владимирович
  • Седлер Иван Кириллович
SU1701896A1
СПОСОБ ИМПУЛЬСНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2001
  • Губарь В.А.
  • Караогланов С.А.
  • Аль Набуда Ахмед Саид
RU2196887C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА СКВАЖИН 1996
  • Губарь В.А.
RU2105874C1
СПОСОБ АКУСТИЧЕСКОГО ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПРОДУКТИВНОГО ПЛАСТА 1990
  • Печков А.А.
  • Кузнецов О.Л.
  • Дрягин В.В.
RU2026969C1
Способ послойного анализа твердых веществ 1984
  • Коляда Валерий Михайлович
  • Марченко Альфред Петрович
  • Нагорная Татьяна Владимировна
  • Черепин Валентин Тихонович
SU1257725A1
ПЕТКЕВИЧ Г.И
Геофизическая диагностика нефтегазоносных и угленосных разрезов
- Киев: Наукова думка, 1989
ИТЕНБЕРГ С.С
Промысловая геофизика
- М.: Гостоптехиздат, 1961.

RU 2 304 211 C2

Авторы

Новиков Сергей Сергеевич

Новиков Александр Сергеевич

Троянов Александр Кузьмич

Астраханцев Юрий Геннадиевич

Даты

2007-08-10Публикация

2005-06-14Подача