Изобретение относится к области технологий производства биологически активной воды и может быть использовано в сельском хозяйстве для повышения урожайности огородных и зерновых культур (сахарной свеклы, томатов, огурцов, пшеницы и др.).
Известны способы обработки семян растений стимуляторами роста (биопрепаратами) - фитоспорином, эпином, Байкалом, биопросом, нарциссом и др. Внесение биопрепаратов в грунт стимулирует рост и развитие растений огурца, томата в теплицах, улучшает биохимический состав плодов, повышает их ранний и общий урожай [1-2].
Недостаток указанных выше способов заключается в сложности технологий получения биостимуляторов и их высокая стоимость.
Описаны способы получения биологически активной воды путем ее магнитной обработки [3-4]. При замачивании семян сахарной свеклы в воде, подвергнутой магнитной обработке, урожайность этой культуры повышается на 8% [3]. При поливе омагниченной водой урожай многих зерновых и огородных культур повышается на 10-40% [4].
Это объясняется тем, что при применении омагниченной воды лучше усваиваются питательные вещества из почвы. А лучшее усвоение питательных веществ из почвы обусловлено более высокой растворяющей способностью омагниченной воды, содержащей более крупный и подвижный ассоциат, по сравнению с неомагниченной водой.
Известен способ получения биологически активной воды в магнитном поле, принятый нами за прототип [5]. Установлено, что при поливе этой водой ускоряется цветение и плодоношение растений, а урожай огурца и томата возрастает на 22-23%.
Это объясняется тем, что в структурированной воде ускоряются процессы кристаллизации, растворения, адсорбции, происходящие в живой клетке. Кроме того, при преобразовании структуры воды улучшаются ее свойства и изотопный состав.
Недостаток известного способа [5] (прототипа) заключается в его недостаточной эффективности при активации воды, что не позволяет повысить урожайность овощных культур. Кроме этого, известный способ не дозволяет заметно увеличить содержание сахара, каротина, витаминов и др. в плодах и снизить содержание нитратов и тяжелых металлов в них.
Задачей настоящего изобретения является повышение урожайности сельскохозяйственных культур, увеличение содержания витамина С, каротина, сахара в плодах и снижение содержания нитратов и тяжелых металлов в них.
Это достигается тем, что в способе получения биологически активной воды на основе обычной воды путем ее энергетической обработки, обычную воду подвергают обработке в роторном кавитационном аппарате при температуре 15-70°С в течение 5-50 циклов при числе оборотов ротора кавитатора 2000-12000 в минуту.
В процессе кавитации, сопровождаемой люминесценцией, ионизацией и др. в воде формируются пузырьки размером 50-120 мкм, приводящие к диспергированию воды [6]. Эти кавитационные пузырьки заводнены газом, паром или их смесью. Захлопывание пузырьков сопровождается адиабатическим нагревом газа в них до температуры 104 °С [7]. Вследствие этого происходит нагревание воды, способствующее удалению из нее вредных примесей (хлорорганических соединений, нитратов и др.) и нейтрализация ионов тяжелых металлов. Кроме того, при кавитации в воде образуются радикалы НО• 2, •ОН и перекись водорода, способствующие значительному повышению ее биологической активности.
Наличие перекиси водорода и радикалов в воде губительно влияет на различные вредные микроорганизмы растений, что повышает их устойчивость к различным заболеваниям и урожайность.
Пузырьки захлопываются во время полупериодов сжатия, создавая кратковременные (порядка 10-6 сек) импульсы давления (до 103 МН/м2=104 кгс/см2 и более). Эти импульсы давления, возникающие в кавитационных пузырьках, обусловливают мгновенные разрывы и гибель микроорганизмов и простейших [8], что приводит к улучшению качества воды и также препятствует поражению растений различными вредителями.
Процесс кавитации воды проводится при числе оборотов ротора кавитатора (ЧОРК) 2000-12000 в минуту. Уменьшение ЧОРК ниже 2000 в минуту не позволяет получить воду с достаточной биологической активностью (БА). Повышение ЧОРК более 12000 в минуту ограничивается состоянием технических разработок в настоящее время.
Число циклов (ЧЦ) обработки воды равно 5-50. При числе циклов обработки меньше 5 получается вода с невысокой БА. Число циклов, равное 50, достаточно для приготовления воды с оптимальной БА. Увеличение числа циклов более 50 повышает энергозатраты на активацию воды.
В процессе кавитации вода нагревается с 15 до 70°С, что способствует удалению из нее вредных примесей (хлороформа, нитратов и др.
Суть предлагаемого способа поясняется на примерах.
Пример 1. Обычная вода (из колодца УРАЛНИИСХОЗа) обрабатывается в кавитационном аппарате, описанном в патенте №2131087, МКИ 6F23К 5/12, F23D 11/34, при ЧОРК 3000 в минуту, числе циклов 50 и температуре 15°С. При кавитационной обработке температура воды повышается до 70°С, в результате чего из нее удаляются вредные примеси - хлороформ, хлорэтилен, углеводороды, нитраты и др.
Полученная биологически активная вода (БАВ) использовалась для полива растений томата в теплицах. Опыты проводились в пленочной теплице в 1993-2001 годах (УРАЛНИИСХОЗ) и в зимней теплице ЗАО "Тепличное" в 2000-2001 годах. Полив БАВ изучали совместно с применением биопрепарата биопрос, который вносили в тепличный субстрат перед посадкой рассады в дозе 100 г/м2.
В теплице УРАЛНИИСХОЗа растения в период плодоношения отличались по биометрическим показателям, таблица 1. Наиболее высокие растения сформировались в варианте с водой БАВ - 210,3 см и с водой БАВ + биопрос - 205,2 см, превышение составило 8-11%. По диаметру стебля различий не отмечено. Полив водой БАВ и биопрос способствовали уменьшению расстояния между цветочными кистями, что положительно. Число плодов и кистей было также наибольшее. Листовая поверхность несколько уменьшилась при поливе водой БАВ.
Агрохимические свойства грунта изменялись в течение вегетации, таблица 2. Полив водой БАВ повышал содержание азота, фосфора, калия в грунте, т.е. питательные вещества в результате диспергации становились более доступными для корневой системы растений. Биопрос повышал содержание питательных веществ в грунте в меньшей мере. В конце вегетации в результате усвоения растениями и вымывания содержание подвижных питательных веществ уменьшилось во всех случаях и в большей степени при поливе обычной водой.
Биохимический состав плодов томата изменялся по вариантам опыта, таблица 3. Отмечено увеличение содержания сухого вещества в плодах, сахаров, аскорбиновой кислоты, каротина, уменьшение содержания нитратов на 20% при поливе БАВ водой. Кислотность плодов мало изменялась. Полив водой БАВ снижал также содержание тяжелых металлов в плодах томата, таблица 4. Содержание цинка в плодах снижалось на 42% при поливе БАВ водой и от биопроса - на 29%. Содержание меди снижалось на 22 и 14% соответственно. Ртуть и свинец в плодах отсутствовали, по количеству кадмия различий не выявлено. Плоды при поливе водой БАВ - диетические.
Полив водой БАВ положительно влиял и на продуктивность томата в теплице, таблица 5. В первый месяц плодоношения урожайность возрастала на 25% при поливе водой БАВ в августе прибавка составила 24%, в сентябре - 25% и общее увеличение - 25%. Внесение биопроса повышало урожай в меньших пределах. По раннему урожаю прибавка составила 6%, по общему 7%. Совместное использование биопроса и воды БАВ повысило ранний урожай на 25% и общий - на 18%.
Сходные результаты получены и в зимней теплице ЗАО "Тепличное при выращивании растений томата.
Пример 2. Обычная вода (из колодца УРАЛНИИСХОЗа) обрабатывается в кавитационном аппарате, описанном в примере 1, при ЧОРК 6000 в минуту, числе циклов 10 и температуре 15°С. При кавитационной обработке температура воды повышается до 70°С и из нее удаляются вредные примеси, указанные в примере 1.
Полученная БАВ использовалась для полива растений огурца в теплицах. Опыты проводились в пленочной теплице УРАЛНИИСХОЗа в 1999-2001 годах и в зимней теплице ЗАО "Тепличное" в 2000-2001 годах.
В период плодоношения растения в пленочной теплице отличались по морфологическим показателям, таблица 6. Наибольшие высота растений, длина побегов, число женских цветков и площадь листьев сформировались в варианте вода БАВ + биопрос. Полив водой БАВ менее стимулировал рост и развитие растений огурца в теплице.
Агрохимические свойства грунта изменялись в период плодоношения таблица 7. Полив водой БАВ и внесение биопроса повышали содержание подвижных питательных веществ в грунте на 20-30% в течение всей вегетации. К концу вегетации содержание азота, фосфора, калия, кальция и магния в грунтах уменьшилось в результате усвоения питательных веществ растениями.
Химический состав плодов изменялся по вариантам опыта, таблица 8. При поливе водой БАВ в плодах на 14% снижалось содержание нитратов. Другие показатели мало изменялись.
Полив оказывал влияние и на продуктивность огурца, таблица 9. В первый месяц плодоношения отмечено увеличение урожая на 25% при поливе водой БАВ в июле прибавка составила 23%. в августе получен примерно одинаковый урожай, а в сентябре прибавка составила 31%. Общая прибавка от полива водой БАВ составила в среднем за 3 года 14%. Наибольший эффект, 21%, получен в варианте вода БАВ + биопрос.
В зимней теплице ЭАО "Тепличное" также наблюдался эффект от полива водой БАВ растений огурца. Полив растений огурца в зимней теплице водой БАВ улучшает их рост, биохимический состав плодов (на 28% снижается содержание нитратов, на 16% - цинка), урожай повышается: ранний - на 11% и общий - на 8%.
Пример 3. Обычная вода (из колодца УРАЛНИИСХОЗа) обрабатывается в кавитационном аппарате, описанном в примере 1, при ЧОРК 8000 в минуту, числе циклов 25 и температуре 15-70°С.
Полученная БАВ использовалась для полива рассады томата. Полив рассады томата водой БАВ изучали в пленочной теплице УРАЛНИИСХОЗа. Полив рассады проводили обычной водой и водой БАВ от посева семян до высадки рассады.
Рассада к моменту посадки в теплицу отличалась по биометрическим показателям, таблица 10. Рассада, выращенная на воде БАВ, отличалась меньшей высотой (67,4 см), образовывала больше на 16% цветков и бутонов, листьев с меньшей листовой поверхностью.
Урожайность томата также различалась по вариантам опыта, таблица 11. Ранняя продуктивность в июле от рассады при поливе водой БАВ была выше на 33%, в августе эффект получен более низкий - 6% и общий эффект составил 9%.
Следовательно, предлагаемый способ по сравнению с прототипом [5], позволяет увеличить содержание в томатах и огурцах: сухого вещества, сахаров, аскорбиновой кислоты, каротина; уменьшить содержание в томатах и огурцах: нитратов на 14-20%, в томатах - цинка - на 42%, меди - на 22%, при отсутствии в них свинца и ртути, и получить диетические продукты. Предлагаемый способ дает возможность повысить урожайность томатов до 25% и ранний урожай томатов и огурцов на 33 и 31% соответственно.
Биометрические показатели растений томата в период плодоношения при поливе различной водой (1999-2001 годы).
дм2
Агрохимические показатели тепличного грунта при поливе различной водой (мг на 100 г абсолютно сухого грунта), 1999-2001 годы.
Влияние полива на химический состав плодов томата, 1999-2001 годы
Содержание тяжелых металлов в плодах томата при поливе различными водами, мг/кг сырого вещества, 2001 год.
Урожайность томата в пленочной теплице при поливе различной водой 1999-2001 годы.
Влияние полива на биометрические показатели растений огурца в период плодоношения, 1999-2001 годы.
Изменение агрохимических свойств тепличного субстрата в течение вегетации огурца, мг/100 г абсолютно сухого грунта, 1999-2001 годы.
Влияние полива на химический состав плодов огурца, 1999-2001 годы
Урожайность огурца в пленочной теплице при поливе различной водой, 1999-2001 годы.
Морфологические данные рассады томата, 2001 год.
Урожайность томата при поливе водой БАВ, 2001
Источники информации
1. Папонов А.Н. Частное овощеводство. Пермь. 1991.
2. Тараканов Г.И., Вольф Л.К., Василенко Н.Г. и др. Методические рекомендации по выращиванию и внедрению новых сортов и гибридов овощных культур селекции ТСХА. М., 1988.
3. Вопросы теории и практики магнитной обработки воды и водных систем. Труды 2-го Всес. совещ. М.: Цветметинформация. 1971. 316 с.
4. Яковлев Н.П., Колобенков К.И. Вестник сельскохозяйственной науки. 1976. №6. С.101-106.
5. Васильев В.В., Слесаренко В.В., Гурская Т.А., Примачев В.В. Активированная вода улучшает плодоношение овощных культур // Ж. Картофель и овощи. 2000. №6.
6. Гривнин Ю.А., Зубрилов А.С., Зубрилов С.П., Афанасьев С.П. // Ж. Физ. химии. 1996. Т.70. №5. С.927-930
7. Большая Советская энциклопедия. М.: Советская энциклопедия. 3-е изд. 1973. Т.11. С.111-113.
8. Перник А.Д. Проблемы кавитации. 2-е изд. Л., 1966.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ АКТИВАЦИИ ВОДЫ ДЛЯ ПОЛИВА ПРИ ВЫРАЩИВАНИИ РАСТЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2304875C2 |
Способ подбора гибридов томата для промышленных теплиц зоны Урала | 2020 |
|
RU2740106C1 |
СПОСОБ ВЫРАЩИВАНИЯ РАСТЕНИЙ В ТЕПЛИЦАХ | 2005 |
|
RU2299539C1 |
СРЕДСТВО ДЛЯ ЗАЩИТЫ ОТ БОЛЕЗНЕЙ И СТИМУЛЯЦИИ РОСТА ТОМАТОВ И ОГУРЦОВ В УСЛОВИЯХ ЗАЩИЩЕННОГО ГРУНТА | 2022 |
|
RU2787586C1 |
Способ выращивания растений в теплицах | 1986 |
|
SU1426508A1 |
СПОСОБ ВЫРАЩИВАНИЯ ОГУРЦА В ВЕСЕННИХ ТЕПЛИЦАХ | 2008 |
|
RU2391813C1 |
КЕРАМЗИТОВЫЙ ПОЧВОГРУНТ ДЛЯ ВЫРАЩИВАНИЯ РАСТЕНИЙ | 2005 |
|
RU2290388C2 |
СПОСОБ ВОЗДЕЛЫВАНИЯ ПЕРЦА СЛАДКОГО, ПРЕИМУЩЕСТВЕННО В СИСТЕМЕ КАПЕЛЬНОГО ОРОШЕНИЯ | 2009 |
|
RU2415534C2 |
Способ выращивания овощных культур в условиях защищенного грунта | 1988 |
|
SU1628980A1 |
Способ выращивания овощных культур | 1991 |
|
SU1792282A3 |
Изобретение относится к области производства биологически активной воды на основе обычной воды. Воду подвергают обработке в роторном кавитационном аппарате при температуре 15-70°С в течение 5-50 циклов при числе оборотов ротора кавитатора 2000-12000 в минуту. Технический результат состоит в повышении эффективности обработки, в результате чего повышается урожайность сельскохозяйственных культур, увеличивается содержание витамина С, каротина, сахара в плодах и снижается содержание нитратов и тяжелых металлов в них. 11 табл.
Способ получения биологически активной воды на основе обычной воды путем ее энергетической обработки, отличающийся тем, что обычную воду подвергают обработке в роторном кавитационном аппарате при температуре 15-70°С, в течение 5-50 циклов и числе оборотов ротора кавитатора 2000-12000 в мин.
Роторный аппарат | 1990 |
|
SU1773469A1 |
РОТОРНЫЙ КАВИТАЦИОННЫЙ АППАРАТ | 1999 |
|
RU2174045C2 |
RU 2001101696 A 27.01.2001 | |||
WO 9409894 A1 11.05.1994. |
Авторы
Даты
2007-10-10—Публикация
2003-07-28—Подача