СПОСОБ ТЕПЛОМАССОЭНЕРГООБМЕНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2007 года по МПК B01J19/10 

Описание патента на изобретение RU2310503C1

Изобретение относится к акустическим (например, ультразвуковым) способам тепломассоэнергообмена жидких, газовых, газожидкостных смесей, взвесей и дисперсий в механо-физико-химических процессах превращения, кроме этого, таким способом воздействуют на воду с целью нагрева ее как теплоносителя.

Известны способы тепломассоэнергообмена при акустическом возбуждении проходных потоков продуктов путем передачи жидкости колебательной энергии с помощью источника механических колебаний, взаимодействующего с жидкостью. Используется этот способ в гидродинамических ультразвуковых излучателях с пластинчатыми и стержневыми резонансными колебательными устройствами, в вихревых и роторно-пульсационных аппаратах. Другим способом тепломассоэнергообмена при акустическом возбуждении может быть взаимодействие струйных потоков между собой путем передачи кинетической энергии одного потока другому. Этот способ используется в струйно-вихревых аппаратах (инжекторах, вихревых трубах), в которых происходит преобразование потенциальной энергии в кинетическую с последующим тепломассоэнергообменом взаимодействующих сред. В результате такого взаимодействия возникает резонанс и кавитационный эффект, в результате чего рвутся связи между молекулами и атомами, при восстановлении которых выделяется энергия в виде тепла. На этой основе работают теплогенераторы.

Известен способ резонансного возбуждения жидкости и устройство для нагревания жидкости [патент РФ 2232630, 7 B01J 19/10, опубликован 20.07.04], который основан на обработке жидкости источником механических колебаний на частоте из ряда основных частот, подчиняющихся определенной эмпирической зависимости. Способ нагревания жидкости основан на акустической обработке жидкости и включает ее подачу в полость вращающегося рабочего колеса и выпуск из полости через ряд выходных отверстий в периферийной кольцевой стенке рабочего колеса в кольцевую камеру, а затем в сборную камеру при соблюдении определенных соотношений между частотой вращения рабочего колеса, радиуса периферийной стенки и резонансной частоты. К недостаткам этого способа следует отнести сложность технической реализации этого способа, избирательность возбуждения, многофакторная зависимость резонансного возбуждения от геометрических, частотных параметров и ограниченная возможность использования этого способа для проведения других тепломассоэнергообменных процессов.

Наиболее близким по технической сущности является способ тепломассоэнергообмена и устройство для его осуществления [патент РФ 2268772, 7 B01J 19/10, 7 B01 F 11/02, опубликован 27.01.2006], при котором возбуждение осуществляется с помощью сообщенных между собой вихревых труб путем частичного соприкосновения встречно направленных поверхностно-наружных слоев двух и более вихревых потоков на глубину, обеспечивающую их акустическое возбуждение за счет деформационного взаимодействия, происходящего в зоне пересечения вихревых труб. Устройство для осуществления этого способа выполнено в виде двух и более вихревых труб, сообщенных между собой с помощью частичного пересечения их по образующим.

Однако этот способ и устройство имеют ряд недостатков. Во-первых, противоструйное взаимодействие на входе снижает эффективность процесса вихреформирования и уменьшает энергию вихревзаимодействия. Во-вторых, размещение пересекающихся вихревых труб вокруг центральной вихревой трубы не обеспечивает одинаковых условий сдвигового взаимодействия вихрей. В случае двухфазового ввода компонентов типа жидкость-газ подобное решение не обеспечивает стабильность процесса из-за неустановившегося режима струйного взаимодействия. Это приводит к деформации вихревых потоков, сопровождающихся низкочастотной вибрацией и гидроударами. Кроме этого, в выходной акустической камере, объединяющей вихревые трубы на выходе, происходит неэффективное разрушение потоков с точки зрения резонансного режима акустического воздействия на продукт.

Техническим результатом, на который направлено предлагаемое изобретение, является усовершенствование способа и устройства тепломассоэнергообмена по патенту РФ 2268772, а именно:

- создание условий для эффективного вихреформирования как однокомпонентного жидкотекучего продукта, так и двух и более компонентных продуктов типа жидкость-жидкость, жидкость-газ;

- увеличение мощности акустического вихревзаимодействия;

- концентрация энергии вихревого разрушения в выходной акустической камере для обеспечения дополнительного резонансного возбуждения.

Технический результат достигается путем частичного соприкосновения встречно направленных поверхностно наружных слоев двух и более вихревых потоков на глубину, обеспечивающую возбуждение за счет деформационно-сдвигового взаимодействия, происходящего в зоне пересечения сообщенных между собой вихревых труб, расположенных по окружности по направлению продуктового потока и имеющих раздельные непересекающиеся входные части. При этом формируют раздельные непересекающиеся вихревые потоки по направлению продуктового потока, возбуждают их в кольцевом пространстве с помощью частичного пересечения вихревзаимодействующих частей вихревых труб и концентрируют энергию акустического возбуждения в выходной акустической камере путем частичного пересечения ее по образующим с вихревзаимодействующими частями вихревых труб. Обработанный звуком продуктовый поток выводят на использование.

Для осуществления настоящего способа предлагается устройство, содержащее напорную продуктовую камеру, вихревые трубы, сообщенные между собой с помощью частичного пересечения их по образующим и объединенные на выходе акустической камерой, вихревые трубы направлены по ходу течения продукта, расположены по окружности и состоят по форме из трех частей. Первая часть - входная, вихреформирующая; средняя часть - переходная и выходная часть - вихревзаимодействующая. Вихреформирующие части выполнены раздельными между собой и сообщены тангенциальными соплами с одной стороны с центральной камерой, расположенной по осевой, а с другой стороны - с кольцевой камерой, расположенной снаружи вихреформирующих частей вихревых труб. Переходные части выполнены коническими с вершинами, обращенными к вихреформирующей части. Вихревзаимодействующие части вихревых труб частично пересечены по образующим друг с другом и с акустической выходной камерой, расположенной по осевой, что создает концентрацию энергии дополнительного резонансного возбуждения в полости акустической камеры.

Предлагаемое техническое решение позволяет:

- осуществить согласованный по направлению вращения ввод одного или двух компонентов, усреднение скоростей вводимых потоков без деформации гидродинамического режима вихреформирования и без отрицательного воздействия струйных потоков друг на друга;

- осуществить одинаковый гидродинамический режим начального взаимодействия вихрей в кольцевом пространстве частичного пересечения вихревзаимодействующих частей вихревых труб;

- произвести эффективное разрушение вихрей в выходной акустической камере путем дополнительного резонансного возбуждения за счет того, что выходная акустическая камера сообщена частичными пересечениями по образующим с вихревзаимодействующими частями вихревых труб.

Возможны два варианта устройства. Первый вариант, когда напорные входные центральная и кольцевая камеры сообщены между собой общим пространством на входе - это обеспечивает вход одного продуктового компонента. Второй вариант, когда эти камеры выполнены раздельными, - это обеспечивает вход двух продуктов и их соединение в вихревом потоке.

Эти и другие особенности настоящего изобретения будут понятны из нижеследующего описания примеров его осуществления со ссылками на прилагаемые чертежи.

Краткое описание чертежей, на которых представлено:

фиг.1 - условное изображение устройства с однопоточным вводом продукта;

фиг.2 - условно изображен вид сверху по фиг.1 со снятой крышкой;

фиг.3 - условное изображение устройства с двухпоточным вводом компонентов;

фиг.4 - условно изображена развертка размещения вихревых труб;

фиг.5 - вид сверху развертки размещения вихревых труб;

фиг.6 - сечение А-А развертки размещения вихревых труб по фиг.4.

На чертежах фиг.1, 2 условно изображен вариант устройства, состоящего из входного патрубка 1, корпуса 2, которые образуют напорную продуктовую камеру 3, сообщенную с кольцевой камерой 4 и центральной камерой 5. Корпус 2 соединен с вихревым блоком 6, состоящим из вихревой камеры 7, крышки 13 и кольцевого дна 16. В вихревой камере по окружности размещены вихревые трубы 8, каждая из которых состоит из входной вихреформирующей части 9, переходной конусообразной части 10 и выходной вихревзаимодействующей части 11, частично пересекающихся по образующим между собой. На входе вихреформирующие части 9 вихревых труб 8 сообщены с кольцевой камерой 4 и с центральной камерой 5 тангенциальными пазами 12. На верхней плоскости вихревой камеры 7 закреплена крышка 13, оформляющая тангенциальные сопловые вводы. По оси каждой вихревой трубы размещены вытеснители 14. В нижней части вихревая камера 7 содержит акустическую камеру 15, которая частично пересечена по образующим с вихревзаимодействующими частями 11 вихревых труб 8. К нижней части вихревой камеры 7 крепится кольцевое дно 16, которое оформляет акустическую камеру 15 как концентратор. Снизу к вихревому блоку 6 крепится выходной корпус 17 с выходным патрубком.

При варианте двухпоточного ввода компонентов (фиг.3) верхняя часть входного корпуса содержит дополнительный патрубок 18, а входной патрубок 1 разделяет кольцевую камеру 4 и центральную камеру 5, при этом входной патрубок 1 служит для ввода одного компонента, а дополнительный патрубок 18 для ввода другого компонента.

Для описания работы устройства, в качестве примера, рассмотрим вариант исполнения, представленный на фигурах 1, 2, 4, 5, 6. Продукт под давлением подается через входной патрубок 1 в напорную камеру 3, которая распределяет его в кольцевую камеру 4 и центральную камеру 5. По тангенциальным сопловым пазам 12 продукт входит с двух сторон в вихреформирующие части 9 вихревых труб 8, которые обеспечивают вращение вихревых потоков. В этой части вихревых труб 8 происходит выравнивание скоростей потоков после струйных истечений, формирование стабильных и равнозначных по гидродинамическим режимам раздельных вихрей. Раздельные вихри в своем дальнейшем передвижении по спиралеобразной траектории через переходные конусообразные части 10 вихревых труб 8 переходят в вихревзаимодействующие части 11, сообщенные друг с другом с помощью частичных пересечений по образующим в последовательном порядке по окружности, образуя кольцевое пространство вихревзаимодействия. В результате этого происходит акустическое возбуждение продукта - ультразвуковая кавитация, что ведет, в итоге, к деструкции агрегатного состояния продукта и активизации химических связей. На выходе из вихревзаимодействующих частей 11 вихревых труб 8 в результате их частичного пересечения по образующим с полостью акустической камеры 15 происходит дополнительное возбуждение при разрушении вихрей в полости акустической камеры 15, т.е. происходит концентрация энергии в ограниченном пространстве. Это обстоятельство увеличивает эффективность тепломассоэнергообмена, ускоряет процессы физико-химических превращений. Обработанный продукт выводят на использование через выходной патрубок выходного корпуса 17.

Аналогичным образом работает устройство, представленное, как вариант, на фиг.3. Отличием является то, что в разделенные кольцевую 4 и центральную 5 камеры подают разные компоненты. Например, в центральную камеру 5 подают водомучную суспензию, а в кольцевую - пар, в результате чего под воздействием температуры и ультразвукового возбуждения происходит мгновенная варка при низкой температуре, сопровождающаяся мгновенным извлечением крахмала для производства спирта.

Узлы и детали описанного устройства могут быть изготовлены на обычном оборудовании, что соответствует промышленной применимости изобретения.

Таким образом, применение способа тепломассоэнергообмена и устройства для его осуществления позволяет сконцентрировать мощность акустического воздействия на продукт в ограниченном пространстве, увеличить объем и плотность кавитационного пространства.

Похожие патенты RU2310503C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ТЕПЛОМАССОЭНЕРГООБМЕНА 2017
  • Куканова Ольга Вячеславовна
  • Хохлов Леонид Михайлович
  • Вербицкий Анатолий Владимирович
  • Расветалов Виктор Александрович
  • Эль-Гадбан Самир Шакиб
RU2658057C1
СПОСОБ ТЕПЛОМАССОЭНЕРГООБМЕНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Медведев Анатолий Васильевич
RU2350856C1
СПОСОБ ТЕПЛОМАССОЭНЕРГООБМЕНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Медведев Анатолий Васильевич
RU2344356C1
СПОСОБ ТЕПЛОМАССОЭНЕРГООБМЕНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Медведев Анатолий Васильевич
RU2304261C1
СПОСОБ ТЕПЛОМАССОЭНЕРГООБМЕНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Медведев Анатолий Васильевич
RU2268772C1
УСТРОЙСТВО ДЛЯ ТЕПЛОМАССОЭНЕРГООБМЕНА 2006
  • Медведев Анатолий Васильевич
RU2331465C1
УСТРОЙСТВО ДЛЯ ТЕПЛОМАССОЭНЕРГООБМЕНА 2011
  • Медведев Анатолий Васильевич
RU2462301C1
УСТРОЙСТВО ДЕСТРУКЦИИ УГЛЕВОДОРОДОВ И ЕГО ПРИМЕНЕНИЕ 2008
  • Аникин Владимир Семенович
  • Аникин Владимир Владимирович
RU2392046C2
СПОСОБ ТЕПЛОМАССОЭНЕРГООБМЕНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Тумаков Сергей Николаевич
  • Тумаков Николай Сергеевич
RU2543182C2
СПОСОБ АКУСТИЧЕСКОЙ ОБРАБОТКИ МНОГОФАЗНОГО ПРОДУКТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Аникин Владимир Семенович
  • Аникин Владимир Владимирович
RU2457896C1

Иллюстрации к изобретению RU 2 310 503 C1

Реферат патента 2007 года СПОСОБ ТЕПЛОМАССОЭНЕРГООБМЕНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к акустическим способам тепломассоэнергообмена жидких, газовых, газожидкостных смесей, взвесей и дисперсий. Способ включает формирование раздельных непересекающихся вихревых потоков, последующее частичное соприкосновение встречно направленных наружных слоев потоков в кольцевом пространстве и концентрирование энергии акустического возбуждения в выходной акустической камере путем частичного пересечения с акустической камерой по образующим вихревых потоков. В устройстве производят акустическое резонансное возбуждение вихревых продуктовых потоков с помощью сообщенных между собой вихревых труб. Вихревые трубы направлены по ходу течения продукта, расположены по окружности, входные части их выполнены раздельными, а выходные сообщены друг с другом и с акустической камерой. Возбужденные потоки, объединенные в общей акустической камере, концентрируют энергию акустического возбуждения в центре и выводят обработанные звуком продукты на использование. Технический результат состоит в увеличении мощности акустического вихревзаимодействия и дополнительном резонансном возбуждении потоков в выходной камере. 2 н. и 1 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 310 503 C1

1. Способ тепломассоэнергообмена путем частичного соприкосновения встречно направленных поверхностно наружных слоев двух и более вихревых продуктовых потоков на глубину, обеспечивающую возбуждение за счет деформационно-сдвигового взаимодействия, происходящего в зоне пересечения сообщенных между собой вихревых труб, отличающийся тем, что с помощью вихревых труб, расположенных по окружности по направлению продуктового потока и имеющих раздельные входные части, формируют раздельные непересекающиеся вихревые потоки по направлению продуктового потока, затем возбуждают их в кольцевом пространстве с помощью частичного пересечения вихревзаимодействующих частей вихревых труб и концентрируют энергию акустического возбуждения в выходной акустической камере путем частичного пересечения с акустической камерой по образующим вихревзаимодействующих частей вихревых труб.2. Устройство тепломассоэнергообмена, содержащее напорную продуктовую камеру, вихревые трубы, сообщенные между собой с помощью частичного пересечения их по образующим и объединенные на выходе акустической камерой, отличающееся тем, что вихревые трубы, направленные по ходу течения продукта, расположены по окружности и каждая состоит из входной вихреформирующей части, переходной части и выходной вихревзаимодействующей части, при этом вихреформирующие части вихревых труб выполнены раздельными между собой и сообщены тангенциальными пазами с центральной камерой, расположенной по осевой, и с кольцевой камерой, расположенной снаружи вихреформирующих частей вихревых труб, переходные части вихревых труб выполнены коническими с вершинами, обращенными к вихреформирующим частям, а вихревзаимодействующие части вихревых труб частично пересечены по образующим друг с другом и с акустической выходной камерой, расположенной по осевой.3. Устройство по п.2, отличающееся тем, что напорная продуктовая камера выполнена общей или раздельной.

Документы, цитированные в отчете о поиске Патент 2007 года RU2310503C1

СПОСОБ ТЕПЛОМАССОЭНЕРГООБМЕНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Медведев Анатолий Васильевич
RU2268772C1
Гидродинамический диспергатор 1987
  • Кондрат Роман Михайлович
  • Петришак Василий Степанович
  • Вовк Владимир Степанович
  • Клюшин Александр Николаевич
  • Колесников Юрий Васильевич
SU1517987A1
WO 8300446 А1, 17.02.1983
Прибор для вычерчивания по изоклиническим кривым траекторий главных напряжений при оптическом методе изучения напряжений в моделях 1934
  • Михайлов А.Д.
SU42303A1
ЕР 0675322 В, 04.10.1995.

RU 2 310 503 C1

Авторы

Медведев Анатолий Васильевич

Даты

2007-11-20Публикация

2006-10-25Подача