Изобретение относится к электронной технике, а именно к аттенюаторам СВЧ на полупроводниковых приборах.
Аттенюаторы СВЧ характеризуют:
- величина прямых потерь Ап, значение которой должно быть как можно меньше;
- величина изменения затухания Аз, значение которой задается;
- наличие числа источников постоянного управляющего напряжения, которое должно быть как можно меньше;
- величина постоянного управляющего напряжения.
Аттенюаторы СВЧ, выполненные на основе полупроводниковых приборов, широко используются в технике СВЧ.
Особенно многоразрядные аттенюаторы СВЧ с дискретным изменением затухания, которые представляют собой каскадное соединение нескольких, по крайней мере, двух разрядов, каждый из которых представляет собой так называемое П- или Т-образное соединение резисторов относительно линий передачи на входе и выходе аттенюатора, при этом они выполнены с заданными величинами сопротивлений.
Подключение и отключение резисторов в каждом разряде осуществляют электронными ключами, в качестве которых используют полупроводниковые диоды и транзисторы. Это позволяет получить требуемые комбинации дискретного изменения затухания многоразрядного аттенюатора СВЧ.
Известен многоразрядный аттенюатор СВЧ, содержащий в каждом разряде П-образное соединение трех резисторов, в котором в качестве электронных ключей использованы полупроводниковые диоды, при этом последовательно соединенный резистор параллельно соединен с pin-диодом, переключаемым с помощью источника постоянного управляющего напряжения, два параллельно соединенные резисторы последовательно соединены с двумя другими pin-диодами соответственно, переключаемые с помощью второго источника постоянного управляющего напряжения [1].
Недостатками данного многоразрядного аттенюатора является наличие в каждом разряде двух источников постоянного управляющего напряжения, что усложняет конструкцию и увеличивает массогабаритные характеристики аттенюатора СВЧ.
Кроме того, поскольку pin-диоды являются двухполюсными приборами, то для развязки их по СВЧ и постоянному управляющему напряжению необходимо использовать фильтры питания, что также усложняет конструкцию и увеличивает массогабаритные характеристики аттенюатора СВЧ.
Известен многоразрядный аттенюатор СВЧ, содержащий в каждом разряде также П-образное соединение трех резисторов, но в котором в качестве трех электронных ключей использованы полупроводниковые транзисторы - полевые транзисторы с барьером Шотки, при этом последовательно соединенный резистор параллельно соединен с истоком и стоком полевого транзистора с барьером Шотки, а затвор соединен с первым источником постоянного управляющего напряжения, два параллельно соединенные резисторы с одинаковыми сопротивлениями расположены по разные стороны от последовательно соединенного резистора и соединены с ним, а вторые их концы соединены со стоками двух других полевых транзисторов с барьером Шотки соответственно, истоки которых «заземлены», а затворы которых соединены между собой и соединены со вторым источником постоянного управляющего напряжения [2] - прототип.
По сравнению с аналогом в данном аттенюаторе СВЧ исключена необходимость использования фильтров питания, поскольку полевые транзисторы с барьером Шотки являются трехполюсными приборами и, следовательно, обладают внутренней развязкой по СВЧ и постоянному управляющему напряжению.
Однако наличие в данном аттенюаторе, как и в аналоге двух источников постоянного управляющего напряжения усложняет конструкцию и увеличивает массогабаритные характеристики аттенюатора СВЧ.
Техническим результатом изобретения является упрощение конструкции и снижение массогабаритных характеристик аттенюатора СВЧ путем сокращения числа источников постоянного управляющего напряжения при сохранении параметров аттенюатора СВЧ, а именно прямых потерь - Ап и изменения затухания - Аз.
Технический результат достигается тем, что в известном многоразрядном аттенюаторе СВЧ, состоящем, по крайней мере, из одного разряда, каждый из которых содержит одно соединение из трех резисторов, один из которых соединен последовательно, а два других - параллельно линиям передачи на входе и выходе аттенюатора, и трех электронных ключей, в качестве которых использованы полевые транзисторы с барьером Шотки, при этом последовательно соединенный резистор соединен с истоком и стоком полевого транзистора с барьером Шотки, а параллельно соединенные резисторы выполнены с одинаковыми сопротивлениями и расположены по разные стороны от последовательно соединенного резистора и соответственно каждый вместе с полевым транзистором с барьером Шотки, истоки которых заземлены, а затворы трех полевых транзисторов с барьером Шотки служат для подачи напряжения от источников постоянного управляющего напряжения.
При этом в каждый разряд аттенюатора дополнительно введены два отрезка линии передачи длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением, превышающим волновое сопротивление линий передачи на входе и выходе аттенюатора, при этом каждый из отрезков линии передачи длиной, равной четверти длины волны, включен между соответствующим параллельно соединенным резистором и стоком соответствующего полевого транзистора с барьером Шотки, а затворы трех полевых транзисторов с барьером Шотки соединены между собой и соединены с одним источником постоянного управляющего напряжения.
Превышение Н волнового сопротивления каждого из отрезков линии передачи длиной, равной четверти длины волны, над волновым сопротивлением линий передачи на входе и выходе аттенюатора ZO определяют по формуле
Н=[Zоткр.×Zзакр.]0,5/Z0,
где Zоткр.- сопротивление полевого транзистора с затвором Шотки в открытом состоянии,
Zзакр. - сопротивление полевого транзистора с затвором Шотки в закрытом состоянии,
Z0 - волновое сопротивление линий передачи на входе и выходе аттенюатора.
Сущность предлагаемого изобретения заключается в следующем. Введение в каждый разряд аттенюатора двух дополнительных отрезков линии передачи длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением, превышающим волновое сопротивление линии передачи на входе и выходе аттенюатора, и предлагаемое их соединение с резисторами и полевыми транзисторами с барьером Шотки, а именно каждый из дополнительных отрезков линии передачи длиной, равной четверти длины волны, включен между соответствующим параллельно соединенным резистором и стоком соответствующего полевого транзистора с барьером Шотки и позволяет соединить между собой затворы всех трех полевых транзисторов с барьером Шотки и подавать на них постоянное управляющее напряжение от одного источника и тем самым упростить конструкцию и снизить массогабаритные характеристики аттенюатора СВЧ.
Превышение волнового сопротивления каждого из отрезков линии передачи длиной, равной четверти длины волны, над волновым сопротивлением линий передачи на входе и выходе аттенюатора позволяет сохранить его параметры, а именно прямые потери - Ап и изменение затухания - Аз.
Изобретение поясняется чертежами.
На фиг.1 изображена топология одного разряда предлагаемого аттенюатора СВЧ, где:
- соединение трех резисторов, один из которых соединен последовательно R1, а два других R2, R3 параллельно линиям передачи на входе и выходе,
- три электронных ключа, в качестве которых использованы три полевых транзистора с барьером Шотки - 4, 5, 6 соответственно,
- два отрезка линии передачи - 7 и 8 соответственно,
- линии передачи на входе и выходе - 9,
- источник постоянного управляющего напряжения - 10.
На фиг.2 изображена электрическая схема предлагаемого аттенюатора СВЧ.
На фиг.3 приведены зависимости от частоты величины прямых потерь Ап и величины затухания Аз при величине постоянного управляющего напряжения, равной 0 и 5 В - напряжение отсечки.
Пример.
В качестве примера рассмотрен один разряд аттенюатора СВЧ.
Все элементы аттенюатора выполнены в монолитно-интегральном исполнении на полупроводниковой подложке из арсенида галлия толщиной, равной 0,1 мм, с использованием классической тонкопленочной технологии.
Соединение трех резисторов R1, R2, R3 выполнено с сопротивлениями резисторов, равными 50, 12,5, 12,5 Ом соответственно путем напыления, например, хрома толщиной 2 мкм.
Три электронных ключа, в качестве которых использованы три полевых транзистора с барьером Шотки 4, 5, 6, имеют напряжение отсечки Uотс, равное 2,5 В.
Два отрезка линии передачи 7 и 8 выполнены шириной и длиной проводников 0,01 и 3 мм соответственно.
Линии передачи на входе и выходе 9 выполнены шириной проводников 0,08 мм.
При этом резистор R1 соединен последовательно, а резисторы R2 и R3 расположены по разные стороны от резистора R1 и соединены параллельно линиям передачи на входе и выходе 9. Последовательно соединенный резистор R1 соединен с истоком и стоком полевого транзистора с барьером Шотки 4 посредством проводников.
При этом каждый из отрезков линии передачи длиной, равной четверти длины волны 7 и 8, включен между соответствующим параллельно соединенным резистором R2 и R3 и стоком соответствующего полевого транзистора с барьером Шотки 5 и 6, а затворы всех трех полевых транзисторов с барьером Шотки 4, 5, 6 соединены между собой и соединены с одним источником постоянного управляющего напряжения 10.
Истоки полевых транзисторов с барьером Шотки 5 и 6 заземлены посредством соединения с основанием, на котором расположена монолитная интегральная схема аттенюатора СВЧ, через металлизированные отверстия в ней, а стоки соединены с резисторами R2 и R3 соответственно посредством проводников.
Работу аттенюатора СВЧ рассмотрим на примере одного разряда.
При подаче на затворы всех трех полевых транзисторов с барьером Шотки 4, 5, 6 соответственно постоянного управляющего напряжения U величиной, равной 0 В, от одного источника постоянного управляющего напряжения 10 становятся открытыми все три полевых транзистора с барьером Шотки 4, 5, 6.
В результате этого полевой транзистор с барьером Шотки 4, включенный параллельно последовательно соединенному резистору R1, имея малое сопротивление, зашунтирует этот резистор и общее последовательное сопротивление аттенюатора Z1, рассчитанное по формуле:
Z1=R1×Zоткр./(R1+Zоткр.),
где Zоткр.- сопротивление полевого транзистора с барьером Шотки, будет меньше, чем сопротивление полевого транзистора с барьером Шотки Zоткр.
Полевые транзисторы с барьером Шотки 5 и 6 также имеют малые сопротивления Zotkp., но поскольку каждый включен на одном конце каждого отрезка линии передачи 7 и 8 соответственно с длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением Z, превышающим Z0, то на другом их конце малые сопротивления Zоткр. преобразуются в большие сопротивления ZA, рассчитанные по формуле:
ZA=Z2/Zоткр.,
где Z2 - квадрат волнового сопротивления отрезков линии передачи 7 и 8.
При этом большие сопротивления ZA сравнимы по величине с сопротивлениями закрытых полевых транзисторов с барьером Шотки Zзакр. Поскольку большие сопротивления ZA включены последовательно параллельно соединенным резисторам с одинаковыми сопротивлениями R2 и R3, то общие параллельные сопротивления Z2 и Z3 разряда аттенюатора, рассчитанные по формулам:
Z2=R2+ZA,
Z3=R3+ZA,
будут превышать сопротивления параллельно соединенных резисторов R2 и R3.
В этом случае аттенюатор будет иметь малое последовательное сопротивление Z1 и два больших параллельных сопротивления Z2 и Z3, включенных по обе стороны малого последовательного сопротивления Z1.
В этом случае в аттенюаторе реализуется величина прямых потерь Ап.
При подаче на затворы всех трех полевых транзисторов с барьером Шотки 4, 5, 6 отрицательного управляющего напряжения U, превышающего по абсолютной величине напряжение отсечки полевого транзистора с барьером Шотки Uотс, все транзисторы будут закрыты.
При этом полевой транзистор с барьером Шотки 4, включенный параллельно последовательно соединенному резистору R1, будет иметь сопротивление Zзакр., значительно большее, чем сопротивление последовательно соединенного резистора R1 и общее последовательное сопротивление Z1 аттенюатора, рассчитанное по формуле
Z1=R1×Zзакр./(R1+Zзакр.)
будет равно R1.
Полевые транзисторы с барьером Шотки 5 и 6 также имеют большие сопротивления Zзакр., но поскольку каждый включен на одном конце каждого отрезка линии передачи 7 и 8 соответственно с длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением Z, превышающим Z0, то на другом их конце большие сопротивления Zзакр. преобразуются в большие сопротивления ZB, рассчитанные по формуле:
ZB=Z2/Zзакр.,
где Z2 - квадрат волнового сопротивления отрезков линии передачи 7 и 8.
При этом малые сопротивления ZB сравнимы по величине с сопротивлениями открытых полевых транзисторов с барьером Шотки Zоткр. Поскольку малые сопротивления ZB включены последовательно параллельно соединенным резисторам с одинаковыми сопротивлениями R2 и R3, то общие параллельные сопротивления Z2 и Z3 разряда аттенюатора, рассчитанные по формулам:
Z2=R2+ZB,
Z3=R3+ZB,
будут равны R2 и R3.
В этом случае аттенюатор будет иметь последовательное сопротивление R1 и два параллельных сопротивления R2 и R3, включенных по обе стороны последовательного сопротивления R1.
В этом случае в аттенюаторе реализуется требуемая величина затухания Аз.
На изготовленных образцах аттенюатора СВЧ были измерены величины прямых потерь Ап и затухания Аз, результаты чего изображены на фиг.3.
Как видно из фиг.3, прямые потери в аттенюаторе на частоте 10 ГГц составляют 1,7 дБ, а затухание - 5,7 дБ, так что изменение затухания аттенюатора СВЧ составляет 4 дБ.
Это говорит о том, что, используя один источник постоянного управляющего напряжения, реализуются те же параметры аттенюатора СВЧ, что и при использовании двух источников постоянного управляющего напряжения.
Таким образом, в предлагаемом многоразрядном аттенюаторе СВЧ прямые потери и требуемая величина затухания реализуется в каждом разряде с помощью одного источника постоянного управляющего напряжения, что позволяет упростить конструкцию и снизить массогабаритные характеристики аттенюатора СВЧ при сохранении указанных выше параметров.
Источники информации
1. Вайсблат А.В. Коммутационные устройства СВЧ на полупроводниковых диодах. М: Радио и связь. - 1987 г., стр.45.
2. Проектирование многоразрядных монолитных аттенюаторов. Абакумова Н.В., Богданов Ю.М. и др. Электронная техника. Сер. 1, СВЧ-техника. 2005 г., вып.2., стр.6-19.
название | год | авторы | номер документа |
---|---|---|---|
АТТЕНЮАТОР СВЧ | 2006 |
|
RU2311704C1 |
АТТЕНЮАТОР СВЧ | 2014 |
|
RU2556427C1 |
АТТЕНЮАТОР СВЧ | 2014 |
|
RU2568261C2 |
АТТЕНЮАТОР СВЧ | 2010 |
|
RU2447546C1 |
АТТЕНЮАТОР СВЧ | 2010 |
|
RU2420836C1 |
ШИРОКОПОЛОСНЫЙ АТТЕНЮАТОР СВЧ | 2013 |
|
RU2513709C1 |
АТТЕНЮАТОР СВЧ | 2006 |
|
RU2324265C2 |
ДИСКРЕТНЫЙ ШИРОКОПОЛОСНЫЙ АТТЕНЮАТОР СВЧ | 2011 |
|
RU2469443C1 |
АТТЕНЮАТОР СВЧ | 2007 |
|
RU2340048C1 |
АТТЕНЮАТОР СВЧ С ДИСКРЕТНЫМ ИЗМЕНЕНИЕМ ЗАТУХАНИЯ | 2009 |
|
RU2407115C1 |
Изобретение относится к электронной технике, а именно - к аттенюаторам СВЧ на полупроводниковых приборах. Техническим результатом является упрощение конструкции и снижение массогабаритных характеристик путем сокращения числа источников постоянного управляющего напряжения. Аттенюатор СВЧ состоит, по меньшей мере, из одного разряда аттенюатора, который содержит соединение трех резисторов, один из которых соединен последовательно, а два других - параллельно линиям передачи на входе и выходе аттенюатора и трех электронных ключей, в качестве которых использованы полевые транзисторы с барьером Шотки. В каждый разряд аттенюатора дополнительно введены два отрезка линии передачи длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением, превышающим волновое сопротивление линий передачи на входе и выходе аттенюатора. Один конец каждого из отрезков линии передачи соединен с одним из концов соответствующего параллельно соединенного резистора, а другой конец - со стоком соответствующего полевого транзистора с барьером Шотки. Затворы трех полевых транзисторов с барьером Шотки соединены между собой и соединены с одним источником постоянного управляющего напряжения. 1 з.п. ф-лы, 3 ил.
Н[Zоткр.×Zзакр.]0.5/Z0,
где Zоткр.- сопротивление полевого транзистора с барьером Шотки в открытом состоянии,
Zзакр. - сопротивление полевого транзистора с барьером Шотки в закрытом состоянии,
Z0 - волновое сопротивление линий передачи на входе и выходе аттенюатора.
«ЭЛЕКТРОННАЯ ТЕХНИКА», сер.1, СВЧ-техника, вып.2, 2005, с.6-19 | |||
СВЧ-выключатель | 1991 |
|
SU1781740A1 |
ПОЛОСКОВЫЙ ОГРАНИЧИТЕЛЬ МОЩНОСТИ | 1988 |
|
SU1540607A1 |
Многоствольная дымовая труба | 1988 |
|
SU1544941A1 |
US 4621244 А, 04.11.1986. |
Авторы
Даты
2008-01-10—Публикация
2006-02-10—Подача