АТТЕНЮАТОР СВЧ Российский патент 2015 года по МПК H01P1/22 

Описание патента на изобретение RU2568261C2

Изобретение относится к электронной технике, а именно к аттенюаторам СВЧ на полупроводниковых приборах.

Аттенюаторы СВЧ, выполненные на основе полупроводниковых приборов, широко используются в технике СВЧ, особенно многоразрядные аттенюаторы СВЧ с дискретным изменением затухания, которые, как правило, представляют собой каскадное соединение нескольких, по меньшей мере, двух разрядов, каждый из которых представляет собой так называемое П- или Т-образное соединение резисторов относительно линий передачи на входе и выходе аттенюатора. Подключение и отключение резисторов в каждом разряде осуществляют электронными ключами, в качестве которых используют полупроводниковые транзисторы.

Это позволяет получить требуемые комбинации дискретного изменения затухания многоразрядного аттенюатора СВЧ.

Известен многоразрядный аттенюатор СВЧ, содержащий в каждом разряде П-образное соединение трех резисторов, в котором в качестве трех электронных ключей использованы полевые транзисторы с барьером Шотки, при этом последовательно соединенный резистор параллельно соединен с истоком и стоком полевого транзистора с барьером Шотки, а затвор соединен с первым источником постоянного управляющего напряжения, два параллельно соединенные резисторы с одинаковыми сопротивлениями расположены по разные стороны от последовательно соединенного резистора и соединены с ним, а вторые их концы соединены со стоками двух других полевых транзисторов с барьером Шотки соответственно, истоки которых «заземлены», а затворы которых соединены между собой и соединены со вторым источником постоянного управляющего напряжения [1].

Известен аттенюатор СВЧ, содержащий три резистора, один из которых расположен последовательно, а два других - параллельно линиям передачи на входе и выходе аттенюатора, и трех электронных ключей, в качестве которых использованы полевые транзисторы с барьером Шотки, при этом первый резистор соединен с истоком и стоком полевого транзистора с барьером Шотки, а два других выполнены с одинаковыми сопротивлениями и расположены по разные стороны от первого и соответственно каждый вместе с полевым транзистором с барьером Шотки, истоки которых заземлены, а затворы трех полевых транзисторов с барьером Шотки служат для подачи напряжения от источников постоянного управляющего напряжения.

В аттенюатор СВЧ с целью нулевой величины изменения фазы сигнала при соответствующем изменении постоянного управляющего напряжения, снижения прямых потерь Ап, упрощения конструкции, снижения массогабаритных характеристик, дополнительно введены два отрезка линии передачи, которые расположены по разные стороны от первого резистора, при этом один конец каждого из отрезков линии передачи соединен с одним из концов соответствующего одного из двух резисторов и со стоком соответствующего полевого транзистора с барьером Шотки, а другой их конец соединен с концами первого резистора, другой конец каждого из двух других резисторов соединен с истоком соответствующего полевого транзистора с барьером Шотки, а затворы трех полевых транзисторов с барьером Шотки соединены между собой и соединены с одним источником постоянного управляющего напряжения, при этом отрезки линии передачи выполнены длиной, равной либо меньшей четверти длины волны в линии передачи, и волновым сопротивлением, равным волновому сопротивлению линий передачи на входе и выходе аттенюатора [2] - прототип.

Недостатком аттенюатора СВЧ-прототипа, как и аналога, является:

во-первых, большие прямые потери СВЧ, поскольку разряды в многоразрядном аттенюаторе соединены каскадно и, следовательно, в открытых состояниях сопротивления последовательно включенных полевых транзисторов с барьером Шотки каждого разряда суммируются,

во-вторых, ограничение функциональных возможностей, поскольку каждый разряд выполняет только одну функцию - реализует один уровень затухания.

Техническим результатом изобретения является снижение прямых потерь СВЧ и расширение функциональных возможностей аттенюатора СВЧ.

Технический результат достигается заявленным аттенюатором СВЧ содержащим резисторы, первый из которых соединен последовательно, а второй и третий - параллельно линиям передачи на входе и выходе аттенюатора, три полевых транзистора с барьером Шотки, два отрезка линии передачи длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением, превышающим волновое сопротивление линий передачи на входе и выходе аттенюатора, при этом один конец первого резистора соединен с линией передачи на входе и с истоком первого полевого транзистора с барьером Шотки, второй его конец - с линией передачи на выходе и со стоком первого полевого транзистора с барьером Шотки, второй и третий резисторы расположены по разные стороны от первого резистора, концы каждого из них соединены с истоком и стоком второго и третьего полевых транзисторов с барьером Шотки соответственно, истоки которых заземлены, один конец каждого из двух отрезков линии передачи соединен с одним из концов первого резистора, а другой конец - со стоком второго и третьего полевых транзисторов с барьером Шотки соответственно, затворы первого и второго полевых транзисторов с барьером Шотки соединены между собой и соединены с одним источником постоянного управляющего напряжения.

В аттенюатор дополнительно введены четвертый полевой транзистор с барьером Шотки, четвертый резистор и второй источник постоянного управляющего напряжения, при этом исток четвертого полевого транзистора с барьером Шотки соединен с одним из концов четвертого резистора и с линией передачи на входе, его сток - с другим концом четвертого резистора и с линией передачи на выходе, а затворы третьего и четвертого полевых транзисторов с барьером Шотки соединены между собой и - со вторым источником постоянного управляющего напряжения.

Сущность изобретения.

Введение в аттенюатор СВЧ четвертого резистора, четвертого полевого транзистора с барьером Шотки и второго источника постоянного управляющего напряжения в совокупности с предлагаемым их соединением, а именно когда исток четвертого полевого транзистора с барьером Шотки соединен с одним из концов четвертого резистора и с линией передачи на входе, его сток - с другим концом четвертого резистора и с линией передачи на выходе, а затворы третьего и четвертого полевых транзисторов с барьером Шотки соединены между собой и со вторым источником постоянного управляющего напряжения, обеспечит:

во-первых, параллельное соединение между собой первого и четвертого полевых транзисторов с барьером Шотки в открытом состоянии и тем самым - снижение в два раза величины их полного сопротивления и, как следствие, - существенное снижение величины прямых потерь СВЧ,

во-вторых, по меньшей мере, три различных комбинации включения параллельных и последовательных резисторов и тем самым получение вместо одной, как в прототипе, трех различных комбинаций включения упомянутых резисторов, а вместе с тем и трех различных значений затухания сигнала СВЧ и, как следствие, - существенное расширение функциональных возможностей заявленного аттенюатора СВЧ.

Изобретение поясняется чертежами.

На фиг.1 дана топология заявленного аттенюатора СВЧ, где

- три резистора - 1, 2, 3 соответственно,

- три полевых транзистора с барьером Шотки - 4, 5, 6 соответственно,

- два отрезка линии передачи - 7, 8 соответственно,

- линии передачи на входе и выходе - 9, 10 соответственно,

- источник постоянного управляющего напряжения -11,

- четвертые резистор и полевой транзистор с барьером Шотки - 12, 13 соответственно,

- второй источник постоянного управляющего напряжения - 14.

На фиг.2 дана его электрическая схема.

На фиг.3 даны зависимости от частоты величины прямых потерь Ап и величины ослабления Аз при различных комбинациях двух постоянных управляющих напряжений, равных 0 и 2 В - напряжение отсечки.

Пример конкретного исполнения заявленного аттенюатора СВЧ.

Все элементы аттенюатора СВЧ выполнены в монолитно-интегральном исполнении на полупроводниковой подложке из арсенида галлия толщиной, равной 0,1 мм, с использованием классической тонкопленочной технологии.

Четыре резистора 1, 2, 3, 12 выполнены с сопротивлениями резисторов, равными 40 Ом, 100 Ом, 50 Ом, 40 Ом соответственно, путем напыления, например, хрома толщиной 2 мкм.

Четыре полевых транзистора с барьером Шотки, 4, 5, 6, 13 имеют напряжение отсечки Uotc равное 2 В.

Два отрезка линии передачи 7, 8 выполнены шириной и длиной проводников 0,01, 3 мм соответственно.

Линии передачи на входе 9 и выходе 10 выполнены шириной проводников 0,08 мм.

При этом первый резистор 1 соединен последовательно, а второй 2 и третий 3 резисторы расположены по разные стороны от первого резистора 1 и соединены параллельно линиям передачи на входе 9 и выходе 10. Последовательно соединенный первый резистор 1 соединен с истоком и стоком первого полевого транзистора с барьером Шотки 4 посредством проводников.

Исток четвертого полевого транзистора с барьером Шотки 13 соединен с одним из концов четвертого резистора 12 и с линией передачи на входе 9, его сток - с другим концом четвертого резистора 12 и с линией передачи на выходе 10.

Один конец каждого из отрезков линии передачи 7, 8 соединен с линиями передачи на входе 9 и выходе 10, а другие - с одним из концов соответствующего параллельно соединенного второго 2 и третьего 3 резистора.

Другой конец каждого отрезка линии передачи 7, 8 соединен со стоком соответствующего полевого транзистора с барьером Шотки второго 5 и третьего 6.

Затворы полевых транзисторов с барьером Шотки первого 4 и второго 5 соединены между собой и соединены с первым источником постоянного управляющего напряжения 11.

Затворы полевых транзисторов с барьером Шотки третьего 6 и четвертого 13 соединены между собой и соединены со вторым источником постоянного управляющего напряжения 14.

Истоки полевых транзисторов с барьером Шотки второго 5 и третьего 6 заземлены посредством соединения с основанием монолитной интегральной схемы аттенюатора СВЧ.

Работа заявленного аттенюатора СВЧ.

Работа аттенюатора СВЧ рассмотрена для четырех комбинаций значений двух управляющих напряжений, которые поясняют и подтверждают расширение его функциональных возможностей.

Первая.

При подаче на затворы полевых транзисторов с барьером Шотки первого 4 и второго 5 постоянного управляющего напряжения U1 величиной, равной 0 В, от первого источника постоянного управляющего напряжения 11 становятся открытыми оба эти полевые транзисторы с барьером Шотки.

При подаче на затворы полевых транзисторов с барьером Шотки третьего 6 и четвертого 13 постоянного управляющего напряжения U2 величиной, равной 0 В, от второго источника постоянного управляющего напряжения 14 становятся открытыми оба эти полевые транзисторы с барьером Шотки.

В результате этого первый полевой транзистор с барьером Шотки 4, включенный параллельно последовательно соединенному первому резистору R1-1, имея малое сопротивление, зашунтирует этот резистор и общее последовательное сопротивление Z1, рассчитанное по формуле

Z1=R1×Zоткр./(R1+Zoткр.),

будет меньше, чем сопротивление полевого транзистора с барьером Шотки Zoткр.

Четвертый полевой транзистор с барьером Шотки 13, включенный параллельно последовательно соединенному четвертому резистору R4 -12, имея малое сопротивление, зашунтирует этот резистор и общее последовательное сопротивление Z4, рассчитанное по формуле

Z4=R4×Zoткр./(R4+Zoткр.),

будет меньше, чем сопротивление полевого транзистора с барьером Шотки Zоткр.

Поскольку эти сопротивления включены параллельно друг другу, то полное сопротивление Z14, рассчитанное по формуле

Z14=Z1×Z4/(Z1+Z4)

будет меньше каждого из них.

Полевые транзисторы с барьером Шотки второй 5 и третий 6 имеют малые сопротивления Zоткр., поэтому каждый из них шунтирует сопротивления R2 и R3 резисторов второго 2 и третьего 3 соответственно, а поскольку каждый включен на одном конце каждого отрезка линии передачи 7, 8 соответственно с длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением Z, превышающим Z0, то на другом их конце малые сопротивления Zоткр. преобразуются в большие сопротивления ZA, рассчитанные по формуле

ZA=Z2/Zоткр., где

Z2 - квадрат волнового сопротивления отрезков линии передачи 7, 8.

При этом большие сопротивления ZA превышают волновое сопротивление линий передачи на входе и выходе Z0.

В этом случае аттенюатор будет иметь малое последовательное сопротивление Z14 и два больших параллельных сопротивления ZA, включенных по обе стороны малого последовательного сопротивления Z14.

В этом случае в аттенюаторе реализуется малая величина прямых потерь Ап.

Вторая.

При подаче на затворы в полевых транзисторов с барьером Шотки первого 4 и второго 5 постоянного управляющего напряжения U1 величиной,, равной -2 В от первого источника постоянного управляющего напряжения 11 становятся закрытыми оба полевых транзистора с барьером Шотки.

При подаче на затворы полевых транзисторов с барьером Шотки третьего 6 и четвертого 13 постоянного управляющего напряжения U2 величиной, равной 0 В, от второго источника постоянного управляющего напряжения 14 становятся открытыми оба полевых транзистора с барьером Шотки.

В результате этого полевой транзистор с барьером Шотки 4, включенный параллельно резистору 1 с сопротивлением R1, имея большое сопротивление, не будет влиять на этот резистор и общее последовательное сопротивление Z1, рассчитанное по формуле

Z1=R1×Zзакр./(R1+Zзакр.), где

Zзакр. - сопротивление полевого транзистора с барьером Шотки, будет близко к сопротивлению R1.

Четвертый полевой транзистор с барьером Шотки 13, включенный параллельно четвертому резистору 12 с сопротивлением R4, имея малое сопротивление, зашунтирует этот резистор и общее последовательное сопротивление Z4, рассчитанное по формуле

Z4=R4×Zоткр./(R4+Zоткр.),

будет меньше, чем сопротивление полевого транзистора с барьером Шотки Zоткр.

Поскольку сопротивления Z1 и Z4 включены параллельно друг другу, то полное сопротивление Z14, рассчитанное по формуле

Z14=Z1×Z4/(Z1+Z4)

будет меньше каждого из них.

Третий полевой транзистор с барьером Шотки 6 имеет малое сопротивление Zоткр., поэтому он шунтирует сопротивление R3 третьего резистора 3, а поскольку он включен на одном конце отрезка линии 8 с длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением Z, превышающим Z0, то на другом конце малое сопротивление Zоткр. преобразуется в большое сопротивление ZA, рассчитанное по формуле

ZA=Z2/ Zоткр., где

Z2 - квадрат волнового сопротивления отрезка линии передачи 8.

При этом большое сопротивление ZA превышает волновое сопротивление линии передачи на выходе Z0.

Второй полевой транзистор с барьером Шотки 5, включенный параллельно второму резистору 2 с сопротивлением R2, имея большое сопротивление, не будет влиять на этот резистор и общее последовательное сопротивление Z2, рассчитанное по формуле

Z2=R2×Zзакр./(R2+Zзакр.), где

Zзакр. - сопротивление полевого транзистора с барьером Шотки, будет близко к сопротивлению R2.

В этом случае аттенюатор будет иметь малое последовательное сопротивление Z14, сопротивление R2, включенное параллельно линии передачи на входе 9, и большое сопротивление ZA, включенное параллельно линии передачи на выходе 10.

В этом случае в аттенюаторе реализуется требуемая величина затухания Аз2, соответствующая сопротивлению R2.

Третья.

При подаче на затворы полевых транзисторов с барьером Шотки первого 4 и второго 5 постоянного управляющего напряжения U1 величиной, равной 0 В, от первого источника постоянного управляющего напряжения 11 становятся открытыми оба полевых транзистора с барьером Шотки.

При подаче на затворы полевых транзисторов с барьером Шотки третьего 6 и четвертого 13 постоянного управляющего напряжения U2 величиной, равной -2 В, от второго источника постоянного управляющего напряжения 14 становятся закрытыми оба полевых транзистора с барьером Шотки.

В результате этого первый полевой транзистор с барьером Шотки 4, включенный параллельно первому резистору 1 с сопротивлением R1, имея малое сопротивление, зашунтирует этот резистор, и общее последовательное сопротивление Z1, рассчитанное по формуле

Z1=R1×Zоткр./(R1+Zоткр.),

будет меньше, чем сопротивление полевого транзистора с барьером Шотки Zоткр.

Четвертый полевой транзистор с барьером Шотки 13, включенный параллельно четвертому резистору 4 с сопротивлением R4, имея большое сопротивление, не будет влиять на этот резистор и общее последовательное сопротивление Z4, рассчитанное по формуле

Z4=R4×Zзакр./(R4+Zзакр.), где

Zзакр. - сопротивление полевого транзистора с барьером Шотки, будет близко к сопротивлению R4.

Поскольку сопротивления Z1 и Z4 включены параллельно друг другу, то полное сопротивление Z14, рассчитанное по формуле

Z14=Z1×Z4/(Z1+Z4)

будет меньше каждого из них.

Второй полевой транзистор с барьером Шотки 5 имеет малое сопротивление Zоткр., поэтому он шунтирует второй резистор 2 с сопротивлением R2, а поскольку он включен на одном конце отрезка линии передачи 7 с длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением Z, превышающим Z0, то на другом конце малое сопротивление Zоткр. преобразуется в большое сопротивление ZA, рассчитанное по формуле

ZA=Z2/ Zоткр., где

Z2 - квадрат волнового сопротивления отрезка линии передачи 7.

При этом большое сопротивление ZA превышает волновое сопротивление линии передачи на входе Z0.

Третий полевой транзистор с барьером Шотки 6, включенный параллельно последовательно соединенному третьему резистору 3 с сопротивлением R3, имея большое сопротивление, не будет влиять на этот резистор и общее последовательное сопротивление Z3, рассчитанное по формуле

Z3=R3×Zзакр./(R3+Zзакр.), где

Zзакр. - сопротивление полевого транзистора с барьером Шотки, будет близко к сопротивлению R3.

В этом случае аттенюатор будет иметь малое последовательное сопротивление Z14, сопротивление R3, включенное на выходе, и большое сопротивления ZA, включенное на входе.

В этом случае в аттенюаторе реализуется требуемая величина затухания Аз3, соответствующая параллельному сопротивлению R3.

Четвертая.

При подаче на затворы полевых транзисторов с барьером Шотки первого 4 и второго 5 постоянного управляющего напряжения U1 величиной, равной -2 В, от первого источника постоянного управляющего напряжения 11 становятся закрытыми оба полевых транзистора с барьером Шотки.

При подаче на затворы полевых транзисторов с барьером Шотки третьего 6 и четвертого 13 постоянного управляющего напряжения U2 величиной, равной -2, В от второго источника постоянного управляющего напряжения 14 становятся закрытыми оба полевых транзистора с барьером Шотки.

В результате этого полевой транзистор с барьером Шотки 4, включенный параллельно последовательно соединенному первому резистору 1 с сопротивлением R1, имея большое сопротивление, не будет влиять на этот резистор и общее последовательное сопротивление Z1, рассчитанное по формуле

Z1=R1×Zзакр./(R1+2закр.), где

Zзакр. - сопротивление полевого транзистора с барьером Шотки, будет близко к сопротивлению R1.

Четвертый полевой транзистор с барьером Шотки 13, включенный параллельно последовательно соединенному четвертому резистору с сопротивлением R4, имея большое сопротивление, не будет влиять на этот резистор и общее последовательное сопротивление Z4, рассчитанное по формуле

Z4=R4×Zзакр./(R4+Zзакр.), где

Zзакр. - сопротивление полевого транзистора с барьером Шотки, будет близко к сопротивлению R4.

Поскольку сопротивления R1 и R4 включены параллельно друг другу, то полное сопротивление Z14 рассчитывается по формуле

Z14=R1×R4/(R1+R4).

Второй полевой транзистор с барьером Шотки 5, включенный параллельно последовательно соединенному второму резистору R2, имея большое сопротивление, не будет влиять на этот резистор и общее последовательное сопротивление Z2, рассчитанное по формуле

Z2=R2×Zзакр./(R2+Zзакр.), где

Zзакр. - сопротивление полевого транзистора с барьером Шотки, будет близко к сопротивлению R2.

Третий полевой транзистор с барьером Шотки 6, включенный параллельно последовательно соединенному третьему резистору с сопротивлением R3, имея большое сопротивление, не будет влиять на этот резистор и общее последовательное сопротивление Z3, рассчитанное по формуле

Z3=R3×Zзакр./(R3+Zзакр.), где

Zзакр. - сопротивление полевого транзистора с барьером Шотки, будет близко к сопротивлению R3.

В этом случае аттенюатор будет иметь последовательное сопротивление Z14, сопротивление Z2, включенное параллельно линии передачи на входе 9 и сопротивление Z3, включенное параллельно линии передачи на выходе 10.

В этом случае в аттенюаторе реализуется требуемая величина затухания Аз1.

На изготовленных образцах аттенюатора СВЧ были измерены величины прямых потерь Ап и затухания Аз, результаты чего даны на фиг.3.

Как видно из фиг.3, прямые потери в аттенюаторе СВЧ на частоте 10 ГГц составляют - 0,5 дБ, а затухание -2,5 дБ, -4,5 дБ и -8,5 дБ, так что изменение затухания аттенюатора СВЧ составляет -2 дБ, -4 дБ и -8 дБ соответственно.

Это говорит о том, что реализуются три значения затухания в заявленном аттенюаторе.

Таким образом, заявленный аттенюатор СВЧ обеспечит по сравнению с прототипом снижение прямых потерь примерно в 2 раза и расширение функциональных возможностей благодаря возможности реализации трех значений затухания.

Источники информации

1. Проектирование многоразрядных монолитных аттенюаторов Абакумова Н.В., Богданов Ю.М. и др. Электронная техника. Сер. 1, СВЧ - техника. 2005 г., вып.2., с.6-19.

2. Патент РФ №2311704, МПК Н01Р 1/22, приоритет от 13.03.2006 г., опубл. 27.11.2007 г. - прототип.

Похожие патенты RU2568261C2

название год авторы номер документа
АТТЕНЮАТОР СВЧ 2014
  • Балыко Александр Карпович
  • Мякиньков Виталий Юрьевич
  • Савельева Людмила Геннадьевна
  • Дементьева Лариса Анатольевна
RU2556427C1
АТТЕНЮАТОР СВЧ 2006
  • Балыко Александр Карпович
  • Зуева Ольга Сергеевна
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
RU2314603C2
АТТЕНЮАТОР СВЧ 2006
  • Балыко Александр Карпович
  • Зуева Ольга Сергеевна
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
RU2311704C1
АТТЕНЮАТОР СВЧ 2006
  • Балыко Александр Карпович
  • Зуева Ольга Сергеевна
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
  • Самсонова Ирина Валерьевна
RU2324265C2
АТТЕНЮАТОР СВЧ 2007
  • Балыко Александр Карпович
  • Зуева Ольга Сергеевна
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
  • Слободенюк Галина Васильевна
RU2340048C1
ПЕРЕКЛЮЧАТЕЛЬ СВЧ 2006
  • Балыко Александр Карпович
  • Зуева Ольга Сергеевна
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
  • Щербаков Федор Евгеньевич
RU2313866C1
АТТЕНЮАТОР СВЧ 2010
  • Балыко Александр Карпович
  • Мякиньков Виталий Юрьевич
  • Сафонова Елена Олеговна
  • Зуева Ольга Сергеевна
  • Шишмакова Людмила Александровна
  • Хонтурова Вера Николаевна
  • Стоноженко Людмила Константиновна
RU2447546C1
АТТЕНЮАТОР СВЧ С НЕПРЕРЫВНЫМ УПРАВЛЕНИЕМ 2009
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
  • Вахламова Марина Юрьевна
  • Коцюба Александр Михайлович
RU2401491C1
ФАЗОВРАЩАТЕЛЬ СВЧ 2008
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
  • Матюшина Надежда Александровна
  • Никитина Людмила Владимировна
  • Сучкова Татьяна Евгеньевна
  • Ююкина Наталья Ивановна
RU2367066C1
ШИРОКОПОЛОСНЫЙ АТТЕНЮАТОР СВЧ С НЕПРЕРЫВНЫМ УПРАВЛЕНИЕМ 2011
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мякиньков Виталий Юрьевич
  • Крюкова Татьяна Александровна
  • Виноградова Нина Афанасьевна
  • Натура Ирина Петровна
  • Хлусова Надежда Германовна
RU2461920C1

Иллюстрации к изобретению RU 2 568 261 C2

Реферат патента 2015 года АТТЕНЮАТОР СВЧ

Изобретение относится к аттенюатору СВЧ. Технический результат состоит в снижении прямых потерь СВЧ и расширение функциональных возможностей аттенюатора СВЧ. Для этого в аттенюатор СВЧ, содержащий три резистора, три полевых транзистора с барьером Шотки, два отрезка линии передачи длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением, превышающим волновое сопротивление линий передачи на входе и выходе аттенюатора, один источник постоянного управляющего напряжения, а также линии передачи на входе и выходе аттенюатора СВЧ, дополнительно введены четвертый резистор, четвертый полевой транзистор с барьером Шотки и второй источник постоянного управляющего напряжения. 3 ил.

Формула изобретения RU 2 568 261 C2

Аттенюатор СВЧ содержащий три резистора, первый из которых соединен последовательно, а второй и третий - параллельно линиям передачи на входе и выходе аттенюатора, три полевых транзистора с барьером Шотки, два отрезка линии передачи длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением, превышающим волновое сопротивление линий передачи на входе и выходе аттенюатора, при этом один конец первого резистора соединен с линией передачи на входе и с истоком первого полевого транзистора с барьером Шотки, второй его конец - с линией передачи на выходе и со стоком первого полевого транзистора с барьером Шотки, второй и третий резисторы расположены по разные стороны от первого резистора, концы каждого из них соединены с истоком и стоком второго и третьего полевых транзисторов с барьером Шотки соответственно, истоки которых заземлены, один конец каждого из двух отрезков линии передачи соединен с одним из концов первого резистора, а другой конец - со стоком второго и третьего полевых транзисторов с барьером Шотки соответственно, затворы первого и второго полевых транзисторов с барьером Шотки соединены между собой и соединены с одним источником постоянного управляющего напряжения, отличающийся тем, что в аттенюатор дополнительно введены четвертый резистор, четвертый полевой транзистор с барьером Шотки и второй источник постоянного управляющего напряжения, при этом исток четвертого полевого транзистора с барьером Шотки соединен с одним из концов четвертого резистора и с линией передачи на входе, его сток - с другим концом четвертого резистора и с линией передачи на выходе, а затворы третьего и четвертого полевых транзисторов с барьером Шотки соединены между собой и со вторым источником постоянного управляющего напряжения.

Документы, цитированные в отчете о поиске Патент 2015 года RU2568261C2

АТТЕНЮАТОР СВЧ 2006
  • Балыко Александр Карпович
  • Зуева Ольга Сергеевна
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
RU2311704C1
АТТЕНЮАТОР СВЧ 2010
  • Балыко Александр Карпович
  • Борисов Александр Анатольевич
  • Мякиньков Виталий Юрьевич
  • Сафонова Елена Олеговна
  • Талызина Ольга Львовна
  • Волгина Маргарита Ивановна
  • Гурычева Антонина Васильевна
RU2420836C1
АТТЕНЮАТОР СВЧ С ДИСКРЕТНЫМ ИЗМЕНЕНИЕМ ЗАТУХАНИЯ 2009
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мякиньков Виталий Юрьевич
  • Карпова Нина Алексеевна
  • Сатлейкин Геннадий Павлович
RU2407115C1
Управляемый резистор 1985
  • Якимаха Александр Леонтьевич
SU1312726A1
US 5281928 A1, 25.01.1994.

RU 2 568 261 C2

Авторы

Балыко Александр Карпович

Мякиньков Виталий Юрьевич

Савельева Людмила Геннадьевна

Дементьева Лариса Анатольевна

Даты

2015-11-20Публикация

2014-03-04Подача