Теплоизоляционное покрытие предназначено для применения в различных отраслях промышленности и служит как покрытие для поверхностей любой формы, требующих тепловой защиты. Применяется для наружных и внутренних работ. Теплоизоляционное покрытие можно использовать в качестве: теплоизоляционного, звукоизоляционного, гидроизоляционного, антикоррозийного, прокладочного и герметизирующего материалов. Из уровня техники известен патент РФ №2220988 на теплоизоляционную композицию, содержит жесткий полимер, полимерную добавку, кислотный отвердитель и стеклянные микросферы. В качестве жесткого полимера используется карбамидоформальдегидная смола КФЖ(М), а в качестве полимерной добавки используется синтетический латекс СКС-65 ГП при следующем соотношении компонентов, мас. ч.: смола 215,0, латекс 1120,0, микросферы стеклянные 800,0, кислотный отвердитель 7,0, вода 75,0. Также из уровня техники известен патент РФ № 2251563 на антикоррозионное покрытие на основе полых микросфер. Покрытие выполняют из композиции, включающей полимерное связующее 5-95% об. и полые микросферы 5-95% об. Композицию наносят по меньшей мере в виде одного слоя и проводят сушку. Полимерное связующее состоит из латексной композиции. Содержит 10-90% об. (со)полимера, выбранного из группы: гомополимер акрилата, стиролакрилатный сополимер, бутадиенстирольный сополимер, полистирол, бутадиеновый полимер, полихлорвиниловый полимер, полиуретановый полимер, полимер или сополимер винилацетата или их смеси. Связующее содержит также 10-90% об. смеси воды и поверхностно-активного вещества. Полые микросферы имеют размер 10-500 мкм и насыпную плотность 50-650 кг/м3. Выбраны из группы: стеклянные, керамические, полимерные, зольные или их смеси.
Оба вышеупомянутых продукта в качестве основного наполнителя содержат определенное количество стеклянных полых микросфер и обладают хорошими теплоизоляционными свойствами с удовлетворительной адгезией к различным подложкам, но имеют разные полимерные связующие. Первая и вторая композиция в составе полимера имеет воду, что напрямую связано с условиями синтеза получения данных связующих. Другие известные продукты в составе полимерного связующего содержат летучие растворители, что повышает их пожароопасность и ограничивает сферу применения. Основными недостатками этих продуктов является:
- малый срок хранения,
- ограничения в условиях хранения,
- увеличение затрат на транспортировку продукта (надо возить воду),
- транспортировка и хранение подразумевает только положительную температуру окружающего воздуха, при введении антифризов снижается качество продукта или увеличивается стоимость продукта,
Задача данного изобретения - устранение данных недостатков и создание композиции для покрытия, которое бы обеспечивало пожаровзрывобезопасность, являлось экологически чистым продуктом, обеспечивало бы экономию при перевозке и хранении (из-за отсутствия воды), имело бы долгий срок хранения, не боялось замораживания. Данная задача достигается за счет того, что композиция может поставляться потребителю в сухом виде и «активизируется» путем добавления необходимого количества воды для разведения до малярной вязкости. Может наноситься шпателем, кистью, наливом, валиком или краскораспылителем.
Теплоизоляционное покрытие представляет собой композицию, включающую связующее, полые микросферы и воду до требуемой консистенции, отличающееся тем, что композиция содержит связующее в сухом виде, выбранное из группы, включающей сухой сополимерный редиспергируемый порошок или смесь его в количестве до 95% мас. с сухим редиспергируемым жидким стеклом в количестве до 80% мас. и/или с цементом в количестве до 60% мас., сухое редиспергируемое жидкое стекло или смесь его в количестве до 80% мас. с цементом в количестве до 60% мас., в качестве полых микросфер содержит боросиликатное стекло насыпной плотностью 0,05-0,35 г/м3 и, при необходимости, наполнитель в количестве до 45% мас.
Композиция дополнительно может содержать добавки, выбранные из группы, включающей 0,2-1,5% мас. пеногасителя, 0,2-1,5% мас. смачивателя, 0,2-1,5% мас. диспергатора, 0,5-1,5% мас. загущающей водоудерживающей добавки, 1-7% мас. антипирена, и, при необходимости, до 10% мас. гидрата извести, до 1,5% мас. ускорителя схватывания, до 2,5% мас. гидрофобизатора, до 1,5% мас. редиспергируемого бентона, до 8% мас. армирующей добавки.
Композиция дополнительно может содержать неорганический пигмент в количестве до 30% мас.
Полые микросферы главным образом получают путем введения порообразователя в основной материал, последующего их измельчения и нагревания для вспенивания порообразователя.
Так, например, полые микросферы могут получать путем пропускания мелких частиц, содержащих порофор через высокотемпературную зону; частицы плавятся или размягчаются в горячей зоне, а газообразователь формирует полость внутри частиц, расширяя их. При охлаждении сферы на воздухе ее стенки затвердевают. Либо их получают методом вспенивания стеклянных частиц в пламени горелки и т.д. В качестве полых стеклянных микросфер используют, например, микросферы типа Гласе бабез, типа Микробаллон, глобумит, сферолит.
Композиция теплоизоляционного покрытия состоит:
- из связующих компонентов: редиспергируемого сухого порошка (например, Акронал 430 или продукция "Ваккер-Хеми Гмбх" Виннапас RI554Z или RI551Z, либо любой акриловых сополимер) от 0 до 95%, цемента (например, белого) от 0 до 60%, редиспергируемого жидкого стекла (например, калиевого) от 0 до 80%,
- из добавок: гидрата извести от 0 до 10%, пеногасителя (например, Агитан 801) от 0,2 до 2,5%, смачивателя (например, Метолат 530) от 0,2 до 1,5%, диспергатора (например, Метолат 588) от 0,2 до 1,5%, ускорителя схватывания (например, формиата кальция) от 0 до 1,5%, гидрофобизатора (например, Бермакол 425) от 0 до 2,5%, загущающей водоудерживающей добавки (например, Лигафоб) от 0,5 до 1,5%, редиспергируемого бентона от 0 до 2%, армирующей добавки (например, Текноцел) от 0 до 8%, антиперена (например, полифосфата натрия) от 1 до 7%,
- из наполнителя (например, каолин, тальк, омиакарб) от 0 до 45%,
- неорганического пигмента (например, диоксид титана) от 0 до 30%,
- полых аппретированных(или нет) микросфер из боросиликатного стекла насыпной плотностью 0.05-0.35 г/м3.
Указанный состав композиции может применяться в любых указанных пропорциональных соотношениях от общей массы состава композиции, принимаемой равной 100%. В качестве связующего материалы могут использоваться в любом из сочетаний:
- полимерный редиспергируемый порошок, цемент, редиспергируемое жидкое стекло,
- полимерный редиспергируемый порошок,
- полимерный редиспергируемый порошок, редиспергируемое жидкое стекло,
- редиспергируемое жидкое стекло,
- редиспергируемое жидкое стекло, цемент.
Использование цемента в чистом виде как связующего ограничено из-за неудолетворительной адгезии к микросферам. Добавки в составе композиции используются для придания определенных свойств: пеногашения, улучшения растекания на подложке, улучшения диспергируемости наполнителей и их смачивания, придания свойств негорючести, армирование (упрочнение покрытия), улучшение реологических свойств, ускорение схватывания, гидрофобности (улучшения водостойкости).
Состав композиции может использоваться как с различными добавками, так и без добавок. Добавки не являются обязательными компонентами в сухой композиции, так как выполняют специальные функции в зависимости от предъявленных требований к данному материалу: реологические, гидроизоляционные, противопожарные, армирующие и так далее.
В составе композиции содержится в качестве обязательной части некоторое количество полых стеклянных микросфер, которые после полимеризации образуют прочную эластичную мембрану. Благодаря наличию микросфер, которые внутри содержат разряженный газ и имеют идеальную сферическую форму, образуется энергосберегающий эффект, основанный на рассеивании теплового потока. Микросферы «фильтруют» поток тепла в ИК-спектре, отражая и рассеивая до 25% тепла. Потери тепла конструкций, защищенных данным продуктом, уменьшаются, и затраты на отопление здания снижаются на 20-30%.
Поток тепла базируется на теплопроводности, зависящей от влажности, и на энтальпическом потоке пара. Он транспортирует тепло, причем влага испаряется в одном месте, извлекая оттуда тепло, и диффундирует в другое место, конденсируется там и выделяет тепло. Этот тип транспорта тепла часто называют «латентным тепловым эффектом».
Пигменты используются в составе композиции в основном для придания цвета и антикоррозионных свойств. Состав композиции может использоваться как с различными пигментами, так и без них.
Наполнители могут служить не только наполнителем системы и способом снижения стоимости продукта, но и армирующей добавкой, например, волластонит, базальтовое волокно и т.д. Состав композиции может использоваться как с различными наполнителями, так и без них.
Смешивание сухого продукта должно происходить при плюсовой температуре. Готовый состав сухой композиции может храниться сколько угодно долго при любых температурах, известных в природе - в среднем от -60°С до +60°С.
Общий состав композиции не содержит ядовитых примесей и является экологически чистым продуктом.
Растворенный продукт не должен подвергаться воздействию отрицательных температур.
Растворение продукта может производиться при помощи дрели с насадкой, при оборотах не более 300 об/мин. Размешивающие элементы перемешивающего устройства не должны соприкасаться со стенками сосуда, в котором происходит перемешивания продукта.
Теплоизоляционное покрытие предназначено для нанесения на поверхности любой формы, требующие тепловой защиты. Применяется для наружных и внутренних работ.
Активизация продукта, до рабочего состояния, происходит путем введения в смесь воды и тщательного перемешивания смеси с выдержкой 10 минут, до требуемой консистенции.
Консистенция продукта зависит от вида инструмента, при помощи которого происходит нанесение на поверхность обрабатываемого материала. Добавление воды обычно составляет 100% от веса сухого материала с погрешностью 25%.
В качестве цемента, например, может использоваться цемент марки ПЦ500 ДО («Осколцемент»), имеющий следующий фазовый состав (мас %): 2СаО·SiO2 - 52-55, 2СаО·SiO2 - 20-22, 3СаО·Al2O3 - 20-22, гипс - 5.
В качестве сухого редиспергируемого полимера, например, может использоваться марка Акронал-430 производства фирмы «BASF».
В рецептурных композициях, где применяется сухое жидкое стекло (гидратированный силикат натрия или калия),например, может быть использовано стекло производства Волховского химического завода под торговой маркой «Монасил».
В рецептурных композициях могут использоваться различные марки полых стеклянных микросфер, например микросферы производства Зеленоградского ОАО «Стеклопластик».
Пример 1.
Композиция была подобрана в составе:
Цемент - 42,1%
Полимерный редиспергируемый порошок - 8%
Пеногаситель - 1%
Смачиватель - 1%
Диоксид титана (пигмент) - 12%
Тальк (наполнитель) - 1,5%
Метилцеллюлоза (загуститель - антиседементационная доб.) - 0,4%
Формиат Кальция (ускоритель схватывания) - 0,5%
Гидрофобизатор - 3%
Антиперен (полифосфат амония) - 2,5%
Полые аппретированные (или нет) микросферы из боросиликатного стекла насыпной плотностью 0.05-0.35 г/м3 - 28%
Композиция разводилась водой до малярной вязкости. Количество воды подбирается в пределах 100%±20% от общей массы композиции в зависимости от того, каким образом будет наноситься покрытие - шпателем или распылителем.
Данная композиция обладает следующими техническими характеристиками (согласно ТУ 2216-003-5654-2859-06, зарегистрированная под маркой «Thermo-Stop NT», изготовленная по данной рецептуре):
Насыпной вес - 0,45 г/см куб
Прочность к мелению - отсутствует
Коэфициент теплопроводности покрытия - 0,06 Вт/м град.
Прочность сцепления - 0,06 МПа
Морозостойкость - не менее 30 циклов
Водостойкость - 72 часа без разрушения
Композиция в данном составе была подвергнута воздействию холода при температуре -60°С, затем воздействию теплового излучения при температуре +60°С. После этого была использована по назначению путем смешивания с водой при комнатной температуре. Полученная консистенция была нанесена в качестве покрытия на один из двух одинаковых кубов из деревянной вагонки объемом 1 м3. В кубы без контакта с поверхностью предварительно были помещены высокочувствительные электронные термометры и датчики влажности.
Проведенные сравнительные испытания на воздействие воды, огня, тепла и холода показали, что куб с покрытием из вышеупомянутого состава композиции был не подвержен возгоранию и проникновению воды, а проникающее воздействие тепла и холода снижается при нанесении покрытия на 30% и 40% соответственно. Дополнительно покрытие было нанесено на одну из двух одинаковых пластин железа. Затем обе пластины были помещены в камеру солевого тумана с образованием аэрозоля при концентрации NaCl=2% на 24 часа, после чего обе пластины были извлечены из камеры, а с пластины с покрытием покрытие было соскоблено. Проведенные сравнительные испытания на коррозийное воздействие показали, что пластина с покрытием совсем не подверглась воздействию коррозии. Напротив, пластина без покрытия была покрыта налетом ржавчины.
Дополнительно покрытие слоем 2 мм было нанесено на одну из двух одинаковых железных труб диаметром 57 мм. Затем обе трубы были подвергнуты тепловому воздействию. Проведенные сравнительные испытания показали, что труба со слоем покрытия в 2 мм была примерно на 29% более устойчива к тепловому воздействию по сравнению с трубой без покрытия, так как ее температура оказалась на 45°С ниже температуры трубы без покрытия, которая на момент замеров составляла +154°С.
Другие примеры реализации изобретения, иллюстрирующие получение теплоизоляционного покрытия, выполненного из композиции, представленной в виде нижеперечисленных альтернативных вариантов, показаны ниже.
Пример 2.
Композиция была подобрана в следующем составе:
Редиспергируемый полимерный порошок - 14%
Цемент - 20%
Полые микросферы - 33%
Пигмент (диоксид титана) - 19%
Каолин - 14%
Композиция разводилась водой до малярной вязкости. Количество воды подбирается в пределах 100%±20% от общей массы композиции в зависимости от того, каким образом будет наноситься покрытие - шпателем или распылителем.
Композиция в данном составе была подвергнута воздействию холода при температуре -60°С, затем воздействию теплового излучения при температуре +60°С. После этого была использована по назначению путем смешивания с водой при комнатной температуре.
Полученная консистенция была нанесена в качестве покрытия на один из двух одинаковых кубов из деревянной вагонки объемом 1 м3. В кубы без контакта с поверхностью предварительно были помещены высокочувствительные электронные термометры и датчики влажности.
Проведенные сравнительные испытания на воздействие воды, огня, тепла и холода показали, что куб с покрытием из вышеупомянутого состава композиции был не подвержен возгоранию и проникновению воды, а проникающее воздействие тепла и холода снижается при нанесении покрытия на 24% и 35% соответственно.
Дополнительно покрытие было нанесено на одну из двух одинаковых пластин железа.
Затем обе пластины были помещены в камеру солевого тумана с образованием аэрозоля при концентрации NaCl=2% на 24 часа, после чего обе пластины были извлечены из камеры, а с пластины с покрытием покрытие было соскоблено. Проведенные сравнительные испытания на коррозийное воздействие показали, что пластина с покрытием совсем не подверглась воздействию коррозии. Напротив, пластина без покрытия была покрыта налетом ржавчины.
Дополнительно покрытие слоем 2 мм было нанесено на одну из двух одинаковых железных труб диаметром 57 мм. Затем обе трубы были подвергнуты тепловому воздействию. Проведенные сравнительные испытания показали, что труба со слоем покрытия в 2 мм была примерно на 23% более устойчива к тепловому воздействию по сравнению с трубой без покрытия, так как ее температура оказалась на 45°С ниже температуры трубы без покрытия, которая на момент замеров составляла +154°С.
Пример 3.
Композиция была подобрана в следующем составе:
Редиспергируемый полимерный порошок - 16%
Редиспергируемое жидкое калиевое стекло - 19%
Кварцевй песок - 21%
Полые микросферы - 25%
Пигмент (диоксид титана) - 19%
Композиция разводилась водой до малярной вязкости. Количество воды подбирается в пределах 100%±20% от общей массы композиции в зависимости от того, каким образом будет наноситься покрытие - шпателем или распылителем.
Композиция в данном составе была подвергнута воздействию холода при температуре -60°С, затем воздействию теплового излучения при температуре +60°С. После этого была использована по назначению путем смешивания с водой при комнатной температуре.
Полученная консистенция была нанесена в качестве покрытия на один из двух одинаковых кубов из деревянной вагонки объемом 1 м3. В кубы без контакта с поверхностью предварительно были помещены высокочувствительные электронные термометры и датчики влажности.
Проведенные сравнительные испытания на воздействие воды, огня, тепла и холода показали, что куб с покрытием из вышеупомянутого состава композиции был не подвержен возгоранию и проникновению воды, а проникающее воздействие тепла и холода снижается при нанесении покрытия на 26% и 38% соответственно.
Дополнительно покрытие было нанесено на одну из двух одинаковых пластин железа.
Затем обе пластины были помещены в камеру солевого тумана с образованием аэрозоля при концентрации NaCl=2% на 24 часа, после чего обе пластины были извлечены из камеры, а с пластины с покрытием покрытие было соскоблено. Проведенные сравнительные испытания на коррозийное воздействие показали, что пластина с покрытием совсем не подверглась воздействию коррозии. Напротив, пластина без покрытия была покрыта налетом ржавчины.
Дополнительно покрытие слоем 2 мм было нанесено на одну из двух одинаковых железных труб диаметром 57 мм. Затем обе трубы были подвергнуты тепловому воздействию. Проведенные сравнительные испытания показали, что труба со слоем покрытия в 2 мм была примерно на 25% более устойчива к тепловому воздействию по сравнению с трубой без покрытия, так как ее температура оказалась на 45°С ниже температуры трубы без покрытия, которая на момент замеров составляла +154°С.
Пример 4.
Композиция была подобрана в следующем составе:
Цемент - 34%
Редиспергируемое жидкое натриевое стекло - 7%
Каолин - 20%
Полые микросферы - 27%
Пигмент (диоксид титана) - 12%
Композиция разводилась водой до малярной вязкости. Количество воды подбирается в пределах 100%±20% от общей массы композиции в зависимости от того, каким образом будет наноситься покрытие - шпателем или распылителем.
Композиция в данном составе была подвергнута воздействию холода при температуре -60°С, затем воздействию теплового излучения при температуре +60°С. После этого была использована по назначению путем смешивания с водой при комнатной температуре.
Полученная консистенция была нанесена в качестве покрытия на один из двух одинаковых кубов из деревянной вагонки объемом 1 м3. В кубы без контакта с поверхностью предварительно были помещены высокочувствительные электронные термометры и датчики влажности.
Проведенные сравнительные испытания на воздействие воды, огня, тепла и холода показали, что куб с покрытием из вышеупомянутого состава композиции был не подвержен возгоранию и проникновению воды, а проникающее воздействие тепла и холода снижается при нанесении покрытия на 22% и 34% соответственно.
Дополнительно покрытие было нанесено на одну из двух одинаковых пластин железа.
Затем обе пластины были помещены в камеру солевого тумана с образованием аэрозоля при концентрации NaCl=2% на 24 часа, после чего обе пластины были извлечены из камеры, а с пластины с покрытием покрытие было соскоблено. Проведенные сравнительные испытания на коррозийное воздействие показали, что пластина с покрытием совсем не подверглась воздействию коррозии. Напротив, пластина без покрытия была покрыта налетом ржавчины.
Дополнительно покрытие слоем 2 мм было нанесено на одну из двух одинаковых железных труб диаметром 57 мм. Затем обе трубы были подвергнуты тепловому воздействию. Проведенные сравнительные испытания показали, что труба со слоем покрытия в 2 мм была примерно на 22% более устойчива к тепловому воздействию по сравнению с трубой без покрытия, так как ее температура оказалась на 45°С ниже температуры трубы без покрытия, которая на момент замеров составляла +154°С.
Пример 5.
Композиция была подобрана в следующем составе:
Редиспергируемое жидкое калиевое стекло - 35%
Кварцевый песок - 34%
Полые микросферы - 24%
Пигмент (диоксид титана) - 7%
Композиция разводилась водой до малярной вязкости. Количество воды подбирается в пределах 100%±20% от общей массы композиции в зависимости от того, каким образом будет наноситься покрытие - шпателем или распылителем.
Композиция в данном составе была подвергнута воздействию холода при температуре -60°С, затем воздействию теплового излучения при температуре +60°С. После этого была использована по назначению путем смешивания с водой при комнатной температуре. Полученная консистенция была нанесена в качестве покрытия на один из двух одинаковых кубов из деревянной вагонки объемом 1 м3. В кубы без контакта с поверхностью предварительно были помещены высокочувствительные электронные термометры и датчики влажности.
Проведенные сравнительные испытания на воздействие воды, огня, тепла и холода показали, что куб с покрытием из вышеупомянутого состава композиции был не подвержен возгоранию и проникновению воды, а проникающее воздействие тепла и холода снижается при нанесении покрытия на 25% и 38% соответственно. Дополнительно покрытие было нанесено на одну из двух одинаковых пластин железа. Затем обе пластины были помещены в камеру солевого тумана с образованием аэрозоля при концентрации NaCl=2% на 24 часа, после чего обе пластины были извлечены из камеры, а с пластины с покрытием покрытие было соскоблено. Проведенные сравнительные испытания на коррозийное воздействие показали, что пластина с покрытием совсем не подверглась воздействию коррозии. Напротив, пластина без покрытия была покрыта налетом ржавчины.
Дополнительно покрытие слоем 2 мм было нанесено на одну из двух одинаковых железных труб диаметром 57 мм. Затем обе трубы были подвергнуты тепловому воздействию. Проведенные сравнительные испытания показали, что труба со слоем покрытия в 2 мм была примерно на 27% более устойчива к тепловому воздействию по сравнению с трубой без покрытия, так как ее температура оказалась на 45°С ниже температуры трубы без покрытия, которая на момент замеров составляла +154°С.
название | год | авторы | номер документа |
---|---|---|---|
КРАСЯЩЕЕ МНОГОФУНКЦИОНАЛЬНОЕ ЗАЩИТНОЕ ПОКРЫТИЕ | 2012 |
|
RU2514940C1 |
СОСТАВ ДЛЯ ИЗГОТОВЛЕНИЯ ОГНЕЗАЩИТНОГО ПОКРЫТИЯ | 2012 |
|
RU2499809C1 |
СУХАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ЭНЕРГОСБЕРЕГАЮЩЕГО ПОКРЫТИЯ ПОНИЖЕННОЙ ПОЖАРНОЙ ОПАСНОСТИ | 2015 |
|
RU2594404C1 |
ТЕПЛОЗАЩИТНАЯ КОМПОЗИЦИЯ | 2009 |
|
RU2400506C1 |
ПОРОШКОВЫЙ СОСТАВ РЕДИСПЕРГИРУЕМОЙ В ВОДЕ КРАСКИ С МИКРОСФЕРАМИ | 2015 |
|
RU2602122C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО И ОГНЕСТОЙКОГО МНОГОСЛОЙНОГО КОМБИНИРОВАННОГО ПОЛИМЕРНОГО ПОКРЫТИЯ | 2007 |
|
RU2352601C2 |
ВОДНАЯ КОМПОЗИЦИЯ, НАПОЛНЕННАЯ ПОЛЫМИ МИКРОСФЕРАМИ, ДЛЯ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО И ТЕПЛОИЗОЛЯЦИОННОГО ПОКРЫТИЯ И СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ НА ЕЕ ОСНОВЕ | 2005 |
|
RU2304156C1 |
ВОДНО-ДИСПЕРСИОННАЯ ТЕПЛОИЗОЛЯЦИОННАЯ, АНТИКОРРОЗИОННАЯ, АНТИКОНДЕНСАТНАЯ КРАСКА ДЛЯ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ | 2014 |
|
RU2572984C2 |
ОГНЕСТОЙКОЕ ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2012 |
|
RU2523818C1 |
СОСТАВ ДЛЯ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ | 2012 |
|
RU2527997C2 |
Изобретение относится к теплоизоляционному покрытию для поверхностей любой формы, требующих тепловой защиты, применяемому в различных отраслях промышленности, а также в качестве звукоизоляционного, гидроизоляционного, антикоррозионного, прокладочного и герметизирующего материала. Покрытие выполнено из композиции, включающей следующие компоненты: связующее в сухом виде, полые микросферы и воду до требуемой консистенции. Связующее выбирают из группы, включающей: сухой сополимерный редиспергируемый порошок или смесь его в количестве до 95 мас.% с сухим редиспергируемым жидким стеклом в количестве до 80 мас.% и/или с цементом в количестве до 60 мас.%, сухое редиспергируемое жидкое стекло или смесь его в количестве до 80 мас.% с цементом в количестве до 60 мас.% В качестве полых микросфер используют боросиликатное стекло насыпной плотностью 0,05-0,35 г/м3. Композиция может содержать наполнитель в количестве до 45 мас.%. Изобретение позволяет получить экологически чистую композицию с высоким сроком хранения и повысить теплопроводность покрытия. 2 з.п. ф-лы.
ТЕПЛОИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ | 2002 |
|
RU2220988C2 |
АНТИКОРРОЗИОННОЕ И ТЕПЛОИЗОЛЯЦИОННОЕ ПОКРЫТИЕ НА ОСНОВЕ ПОЛЫХ МИКРОСФЕР | 2003 |
|
RU2251563C2 |
Шихта для изготовления легковесного теплоизоляционного материала | 1985 |
|
SU1281551A1 |
SU 1785534 A3, 30.12.1992 | |||
Устройство для контроля заданного диаметра намотки | 1986 |
|
SU1388374A1 |
Авторы
Даты
2008-03-10—Публикация
2006-06-02—Подача