Изобретение относится к теплотехнике и может быть использовано в теплонасосных и холодильных установках бытового и промышленного назначения.
Из технической литературы известно большое количество способов преобразования тепла и механической энергии, то есть термодинамических циклов с рабочим телом как в виде пара низкокипящей жидкости, так и газа. Теоретически максимальным по технической эффективности преобразования энергии признается цикл Карно, к которому асимптотически приближаются практически реализуемые циклы, в частности обратный цикл Ренкина с фазовым переходом гомогенного рабочего тела, например, воды, фреона, аммиака и т.п. [Рей Д., Макмайкл Д. Тепловые насосы. - М.: Энергоиздат. - 1982. - с.25].
Существующие теплонасосные установки с таким циклом обычно содержат последовательно соединенные компрессор, теплообменники испарителя и конденсатора, детандер или дроссель, а также вспомогательные элементы, такие как отделитель жидкости, электропривод и различные вентили [1. Промышленная теплотехника и теплоэнергетика. - М. 2. Авторское свидетельство СССР 1740915, Б.И. №22].
Недостатком цикла Ренкина и реализующих его устройств является ограниченный набор жидкостей и газов для его рабочего тела, который уменьшает их температурный диапазон и величину коэффициентов тепловой и холодильной эффективности на уровне 5-7 единиц, что гораздо меньше, чем у адекватного цикла Карно. При этом теплообменник нагревателя-конденсатора всегда находится под высоким выходным давлением компрессора, что увеличивает металлоемкость конструкции и снижает ее безопасность.
Наиболее близким предлагаемому способу и устройству является патент России №2133000, реализующий расщепленный цикл Карно, образованный процессами, отображаемыми на p-v-диаграмме как смещение двух треугольных половинок цикла Карно в виде цифры 8.
Согласно известному способу, преобразование тепла осуществляют проведением одновременных процессов сжатия и расширения разных порций рабочего тела из смеси газа и пара со сбалансированным теплообменом между ними посредством контакта рабочего тела обоих процессов с одними и теми же регенеративными поверхностями с последующим восстановлением давления до первоначального в адиабатных процессах. При этом часть пара, перешедшего в жидкую фазу, удаляют из оборота, а восстановление давления оставшейся части смеси производят при постоянной температуре.
Устройство для осуществления способа по патенту 2133000 содержит контуры циркуляции рабочего тела в виде смеси теплоносителя и хладагента с его компрессором, дросселем и теплообменниками нагрева и охлаждения, заключенными в цилиндрический корпус с двумя коаксиальными друг другу и концентрично ему расположенными роторами, каждый с несколькими равномерно расположенными лопастями, совместно образующими круговую цепочку камер с расположенными в них телами с развитой регенеративной поверхностью в виде пластин, расположенных перпендикулярно оси вращения ротора, и привод неравномерного вращения роторов из некруглых колес [Патент РФ 2133000, 10.07.1999].
Благодаря этому, отопительный коэффициент ε такой установки превышает аналогичные показатели цикла Карно примерно в два раза при тех же температурных соотношениях
Здесь ΔT=T2-T1,
T2 - температура нагрева,
Т1 - температура охлаждения.
К сожалению, практическая реализация двух вышеназванных смещенных треугольных половинок цикла связана с большими технологическими трудностями и применением специальных двухроторных машин, что обусловило использование данного изобретения лишь для сушки и выпаривания ягод, фруктов, травы и т.п. [Авторское свидетельство СССР 1740915, Б.И. №22].
Технической задачей заявляемого изобретения является снижение давления в теплообменниках нагрева и охлаждения до уровня входного давления компрессора и превышение технической эффективности цикла Карно при одновременном его упрощении и повышении экологической безопасности.
Предлагаемый способ трансформации тепла посредством одновременных процессов изотермического сжатия и адиабатного расширения разных частей порций рабочего тела с последующим восстановлением давления до первоначального в теплообменниках нагрева и охлаждения отличается тем, что гетерогенное рабочее тело в виде пены из нейтральной жидкости с пенообразующими присадками и инертного газа сжимают, а затем разделяют на жидкую и газовую части, которые подвергают раздельному дросселированию и детандированию соответственно, далее пропускают раздельно через параллельные теплообменники жидкостного нагрева и газового охлаждения с последующим политропным смешиванием и новым пенообразованием.
Политропное смешивание можно осуществлять по изобаре с адиабатой.
Политропное смешивание можно осуществлять по изобаре с непосредственным переходом к процессу изотермического сжатия.
Причем вначале политропное смешивание осуществляют по изобаре с укороченной адиабатой, которыми на p-v-диаграмме замыкают концы политропы треугольного полуцикла Карно. А в дальнейшем политропное смешивание осуществляют по изобаре частного цикла Карно непосредственно перед изотермическим сжатием.
Заявляемое теплохолодильное устройство для осуществления предлагаемого способа, содержащее контуры циркуляции рабочего тела с его компрессором, дросселем и теплообменниками нагрева и охлаждения, отличается тем, что выход компрессора соединен с тангенциальным патрубком отделителя жидкой части гетерогенного рабочего тела в виде смеси теплоносителя и хладагента, представляющего собой пенообразную смесь нейтральной кремнийорганической жидкости с пенообразующими присадками и инертного газа, верхний газовый патрубок отделителя соединен со входом детандера, а нижний - с жидкостным дросселем, соединенным через теплообменник нагрева с входным соплом пенообразующего инжектора входного патрубка компрессора, тогда как боковой патрубок этого инжектора соединен через газовый теплообменник охлаждения с выходом детандера, механически или электрически связанного с приводом компрессора.
В устройстве отделитель жидкой части гетерогенного рабочего тела выполнен в виде вертикальной вихревой трубы Ранка, у которой верхний холодный патрубок снабжен гидродинамическим газовым фильтром, а горячий нижний патрубок прикрыт пеногасящим конусом с кольцевой щелью.
Предлагаемый способ поясняется диаграммами, представленными на фигурах 1 и 2.
На фигуре 1 изображена p-v-диаграмма частного полуцикла Карно, реализованного изобретением, а на фигуре 2 - графики отопительного коэффициента ε. На фигуре 3 изображена принципиальная схема теплохолодильного устройства, реализующего предложенный способ.
В соответствии с предлагаемым способом покажем трансформацию тепла по верхнему полуциклу Карно 1-2-3 на фигуре 1, которую осуществляют следующим образом.
Гетерогенное рабочее тело, участвующее в процессе, получают смешиванием до пенообразования нейтральной кремнийорганической жидкости [см. Ридер г., Хупер Ч. Двигатели Стирлинга. - М.: Мир, 1986] с пенообразующими присадками и инертного одноатомного газа с малой молярной теплоемкостью, но большим показателем адиабаты. Например, смесь из гелия или ксенона и жидкости торговой марки ДАУТЕРМ с температурой кипения до 675 градусов Кельвина [Куландин А.А. и др. Энергетические процессы космических аппаратов. - М.: Машиностроение, 1979. - c.175]. Процесс смешивания соответствует на p-v-диаграмме (фигура 1) политропном участку 1-2 термодинамического цикла.
Полученную пену адиабатно сжимают практически по изотерме 2-3, так как мелкодисперсные пузырьки газа, разогреваемые сжатием, практически мгновенно отдают свое избыточное тепло окружающей их жидкости. При этом температура нагрева жидкости может достигать 200°С. Поскольку жидкая фракция рабочего тела практически несжимаема, то в точке 3 плотность пены существенно увеличивается и ее разлагают на составные части - газ и жидкость. Разогретую жидкость дросселируют и отдают ее избыточное тепло Q2 обогреваемому объему, так как температура жидкости увеличивается не только от нагрева сжимаемыми пузырьками газа, но и диссипативным сбросом энергии давления при дросселировании. При этом газ, наоборот, охлаждают с использованием эффекта Ранке и подвергают детантированию, то есть расширению, которое сопровождается тоже резким понижением его температуры. Тем самым снижают и температуру охлаждаемого объема окружающей среды, отводя тепло Q1, а затем газообразную и жидкую фракции рабочего тела снова смешивают между собой и вспенивают. Поскольку процесс разогрева и охлаждения различных частей рабочего тела проводят одновременно и параллельно, то соответствующий термодинамический процесс между точками 1 и 2 идет по усредненной политропе с небольшим отрицательным показателем, то есть практически по изобаре 6-2, что и позволяет без труда найти величину коэффициентов отопительного ε и холодильного μ такого цикла:
Здесь
- отопительный коэффициент полного цикла Карно,
- относительная температура.
Сравнительная зависимость отопительного коэффициента ε различных циклов от относительной температуры нагрева и охлаждения, представленная на фигуре 2, показывает, что использование предлагаемого способа в тепловых насосах особенно эффективно в более широком диапазоне температур, где его отопительный коэффициент (кривая 7 на фигуре 2) практически в 2 раза превышает соответствующую эффективность цикла Карно (кривая 8), так как при одном и том же количестве переданного тепла Q2, площадь треугольного полуцикла Карно 1-2-3 и его соответствующая работа A1 привода в два раза меньше общей работы А=A1+А2 полного цикла Карно. Для сравнения показана кривая 9 - отопительный коэффициент известных установок.
В соответствии с описанным процессом p-v диаграмма на фигуре 1 показывает, что при осуществлении изобретения термодинамический процесс характеризуется использованием лишь одной треугольной половины цикла Карно, состоящей из изотермы, адиабаты и замыкающей их политропы, которая в общем случае может быть аппроксимирована изобарой 1-4 и частью адиабаты 4-2, а в предельном случае - одной изобарой частного цикла Карно с точками перехода адиабат в изотермы, расположенными на общей изобаре 6-2. Этот процесс перехода к установившемуся треугольному циклу 2-3-6 на p-v-диаграмме происходит постепенно через несколько циклов разогрева установки по 4-угольному циклу 1-4-2-3, то есть, как сказано выше, сначала политропное смешивание осуществляют по изобаре с адиабатой, которыми замыкают концы треугольного полуцикпа Карно. А в дальнейшем политропное смешивание осуществляют по изобаре частного цикла Карно, реализованного заявляемым изобретением, непосредственно перед изотермическим сжатием.
Причем вначале до выхода на установившийся режим смешивание осуществляют по изобаре с укороченной адиабатой обобщенного цикла Карно, которыми замыкают концы вышеупомянутой политропы, и диагонально противоположные углы этого цикла. А в дальнейшем при установившемся режиме смешивание осуществляют по изобаре частного цикла Карно, у которого точки перехода адиабат в изотермы расположены на общей изобаре.
В результате процесс трансформации тепла ведут по треугольному полуциклу Карно, состоящему из изотермы, адиабаты и изобары, который совпадает с половинкой упомянутого частного цикла Карно, но обладает в два раза меньшей площадью, а следовательно, и затратами механической работы по сравнению с любым обобщенным циклом Карно с расположением всех углов на различных изобарах или уровнях p-v-диаграммы.
При этом простое устройство, реализующее предложенный способ, содержит два связанных контура жидкости и газа, образующих гетерогенное пенообразное рабочее тело компрессора, которое может обладать более широким набором технических свойств, чем однородное гомогенное вещество.
Устройство для осуществления предложенного способа содержит компрессор 10, выход которого соединен с боковым тангенциальным патрубком отделителя жидкой фракции 11, выполненным, например, в виде вертикальной вихревой трубы Ранке. Верхний холодный патрубок вихревой трубы снабжен гидродинамическим газовым фильтром 12, служащим для осаждения жидкости, и соединен со входом детандера 13, а нижний - прикрыт пеногасящим конусом 14 с кольцевой щелью 15 для сбора жидкости у стенок вихревой трубы и соединен с жидкостным дросселем 16. Выходной патрубок этого дросселя через теплообменник нагрева 17 обогреваемого объема (например, отапливаемого помещения) соединен с центральным соплом пенообразующего инжектора 18 входного патрубка компрессора 10, а боковой патрубок этого инжектора через теплообменник 19 охлаждения окружающей среды соединен с выходом детандера 13, который механически или электрически связан с приводом 20 компрессора 10.
При использовании данного устройства в качестве холодильника теплообменник 19 располагается в охлаждаемом объеме, а теплообменник нагрева 17 - в окружающей среде, например в воздухе или проточной воде. Поскольку охлаждение осуществляют газом, а не парами жидкого хладагента, то предельная температура охлаждения может быть гораздо ниже температуры кипения и даже замерзания легкокипящих жидкостей, которые используются в известных одноконтурных холодильных установках с последовательным соединением компрессора и теплообменников.
Работа предложенного устройства, по существу, не отличается от вышерассмотренного способа и сводится к прокачиванию гетерогенного рабочего тела компрессором 10 по двум связанным контурам жидкости и газа.
Первый контур жидкости начинается в нижнем горячем патрубке отделителя жидкой фракции 11 в виде вихревой трубы Ранке, после которого жидкость еще больше разогревается в дросселе 16, поскольку на него приходится почти весь перепад давления Р3-P1, создаваемого компрессором 10. Поэтому давление в теплообменнике нагрева 17 практически равно входному давлению P1 цикла, так как на смешивание частей рабочего тела в пенообразующем инжекторе 18 затрачивается небольшая работа, а следовательно, и небольшой перепад давлений на инжекторе 18.
Второй газовый контур начинается в верхнем холодном патрубке вихревой трубы Ранке, после которого газ адиабатно расширяется и еще больше охлаждается в детандере 13, также затрачивая на это практически весь перепад давления Р3-P1 компрессора 10. После отбора тепла Q1 в теплообменнике охлаждения 19 подогретый газ поступает в боковой патрубок пенообразующего инжектора 18, где смешивается с охлажденной в теплообменнике 17 жидкостью первого контура и в пенообразном состоянии сжимается компрессором 10. При этом происходит передача избыточного тепла сжимаемого газа несжимаемой жидкости без каких-либо дополнительных регенеративных теплообменников, как у прототипа. Кроме того, полезная работа, создаваемая детандером 13, также может быть возвращена рабочему циклу за счет частичной разгрузки привода 20 компрессора 10.
Таким образом, осуществление процесса нагрева нейтральной высококипящей жидкостью, а охлаждение - одноатомными газами с очень низкой температурой сжижения и отвержения позволяет максимально использовать широкий температурный диапазон такого гетерогенного рабочего тела для эффективного преобразования его двух видов внутренней энергии - кинетической и потенциальной, которое происходит при совместном сжатии и раздельном расширении вышеупомянутых фракций рабочего тела с коэффициентами эффективности нагрева и охлаждения выше, чем у идеального цикла Карно по экологически чистой технологии без озоноопасных и вредных веществ.
название | год | авторы | номер документа |
---|---|---|---|
ТЕПЛОНАСОСНАЯ ЭНЕРГОСНАБЖАЮЩАЯ УСТАНОВКА | 2012 |
|
RU2533278C2 |
СПОСОБ ПОЛУЧЕНИЯ ХОЛОДА И ТЕПЛА В ЭКОЛОГИЧЕСКИ ЧИСТОЙ ГАЗОВОЙ ХОЛОДИЛЬНОЙ УСТАНОВКЕ И УВЕЛИЧЕНИЯ ХОЛОДИЛЬНОГО И ОТОПИТЕЛЬНОГО КОЭФФИЦИЕНТОВ | 2001 |
|
RU2183802C1 |
ТЕРМОБАЛАНСИРУЕМЫЙ ДИРИЖАБЛЬ | 2010 |
|
RU2457149C2 |
Способ теплохладоснабжения | 1989 |
|
SU1787247A3 |
СПОСОБ РАБОТЫ ПОРШНЕВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2010 |
|
RU2432474C2 |
БЕЗДРОССЕЛЬНАЯ ТЕПЛОНАСОСНАЯ УСТАНОВКА | 2016 |
|
RU2614133C1 |
СПОСОБ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ВНЕШНЕГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ РАБОТУ | 1994 |
|
RU2078253C1 |
СПОСОБ ЛИКВИДАЦИИ ВНУТРЕННИХ ОТЛОЖЕНИЙ НЕФТЕГАЗОВОГО ОБОРУДОВАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2016 |
|
RU2603329C1 |
КОНДИЦИОНЕР И ВИХРЕВОЙ АППАРАТ ДЛЯ НЕГО | 2009 |
|
RU2473019C2 |
ТЕПЛОСНАБЖАЮЩАЯ УСТАНОВКА | 2002 |
|
RU2213306C1 |
Изобретение относится к теплотехнике и может быть использовано в теплонасосных и холодильных установках бытового и промышленного назначения. Способ осуществляется посредством одновременных процессов изотермического сжатия и адиабатного расширения разных частей порций рабочего тела с последующим восстановлением давления до первоначального в теплообменниках нагрева и охлаждения. Гетерогенное рабочее тело в виде пены из нейтральной жидкости с пенообразующими присадками и инертного газа сжимают, а затем разделяют на жидкую и газовую части, которые подвергают раздельному дросселированию и детандированию соответственно, далее пропускают раздельно через параллельные теплообменники нагрева и охлаждения с последующим политропным смешиванием и новым пенообразованием. Устройство содержит контуры циркуляции рабочего тела с его компрессором, дросселем и теплообменниками нагрева и охлаждения. Выход компрессора соединен с тангенциальным патрубком отделителя. Верхний патрубок отделителя соединен со входом детандера, а нижний - с дросселем, соединенным через теплообменник нагрева с входным соплом инжектора входного патрубка компрессора. Боковой патрубок инжектора соединен через теплообменник охлаждения с выходом детандера, механически или электрически связанного с приводом компрессора. Техническим результатом является снижение давления в теплообменниках нагрева и охлаждения до уровня входного давления компрессора и повышение экологической безопасности. 2 н. и 3 з.п. ф-лы, 3 ил.
СПОСОБ ПРЕОБРАЗОВАНИЯ ТЕПЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2133000C1 |
ЭНЕРГЕТИЧЕСКИЙ ЦИКЛ, В КОТОРОМ ИСПОЛЬЗУЕТСЯ СМЕСЬ | 1998 |
|
RU2148722C1 |
ТЕПЛОНАСОСНАЯ УСТАНОВКА "СВЕТОБЫЛЬ-1" | 1990 |
|
RU2061934C1 |
US 5996355 A, 07.12.1999 | |||
US 6161392 A, 19.12.2000 | |||
GB 1534907 A, 06.12.1978. |
Авторы
Даты
2008-03-20—Публикация
2006-02-09—Подача