Изобретение относится к области авиационной ракетно-космической техники. Оно может быть использовано в авиационных ракетных комплексах (АРК) космического назначения преимущественно с тяжелыми баллистическими ракетами (массой 100 т и более), оснащенными, например, жидкостными ракетными двигателями (ЖРД) и запускаемыми в воздухе с целью выведения космических аппаратов (КА), например ИСЗ, на орбиты.
Известен аналог АРК с тяжелой ракетой-носителем (РН) воздушного запуска, буксируемой несколькими самолетами, представленный в описании патента РФ №2130879 (1999 г.).
Указанный аналог, как наиболее близкий по технической сути, может быть принят за прототип.
Основными недостатками прототипа в том числе являются:
- необходимость выполнения больших объемов научно-исследовательских и опытно-конструкторских работ (НИОКР) по созданию наземного средства (НС), обеспечивающего взлет ракеты-носителя, оснащенной крылом, стабилизатором и, например, вертикальным оперением путем буксировки ее самолетом;
- большие финансовые затраты и сроки выполнения работ, необходимые для создания вышеупомянутого НС.
- малая эффективность использования технических возможностей самолетов-буксировщиков ракеты-носителя (РН);
- сложность устройства сопряжения РН с самолетами-буксировщиками и реализуемого способа пуска РН;
- сложность технологий отработки систем АРК при его создании и штатной эксплуатации;
- малая надежность и безопасность АРК при его создании и штатной эксплуатации.
Задачами, на решение которых направлена заявка на изобретение, в том числе являются:
- уменьшение объемов выполнения НИОКР по созданию вышеупомянутого НС (далее по тексту читать: «транспортно-разгонной платформы (ТРП)») и, следовательно, АРК в целом;
- повышение безопасности экипажей самолетов при взлете;
- повышение безопасности и надежности самолетов при взлете;
- существенное снижение затрат на создание АРК в целом;
- существенное снижение технических, финансовых рисков при создании АРК и при его эксплуатации, а также сроков разработки АРК. Это достигается в том числе за счет:
- применения наземной ТРП, на которой смонтирована РН;
- применения РН, на корпусе которой дополнительно установлены обтекатель со смонтированным на нем крылом, обтекатели передний (носовой) и хвостовой со стабилизирующими поверхностями с возможностью их отделения от корпуса РН;
- двух тросов-фалов и двух самолетов-буксировщиков для обеспечения буксировки РН в район пуска;
- возможности использования более простого по конструкции устройства сопряжения РН с самолетами-буксировщиками;
- исполнения наземной ТРП на базе существующего отработанного самолета, принятого к летной эксплуатации, например, самолета Ил-76МТ (МД, МФ), имеющего остаточные ресурс и срок службы, доработанного под размещение и наземное транспортирование на нем РН, а также под обеспечение эксплуатации его в составе АРК, при этом этот базовый самолет дорабатывается под размещение на нем ракеты-носителя (РН) в минимальном объеме и с максимальным использованием всех его штатных агрегатов, узлов и систем (шасси, двигатели, фюзеляж, системы управления, электропитания, связи и т.д.). Сущность изобретения поясняется чертежами, где:
- на фиг.1 изображен общий вид аэропоезда сбоку, размещенного на взлетно-посадочной полосе, содержащего последовательно соединенные между собой с помощью тросов-фалов два самолета буксировщика и РН, смонтированной на ТРП;
- на фиг.2 изображен выносной элемент I, представленный на фиг.1, и отражающий взаимное размещение РН и ТРП относительно друг друга и второго самолета-буксировщика при виде на них сбоку;
- на фиг.3 изображен вид А, представленный на фиг.2, отражающий размещение РН и ТРП относительно друг друга при виде на них сверху.
РН 1 со смонтированными на ее корпусе 2 обтекателе 3 с крылом 4, передним (носовым) обтекателем 5, хвостовым обтекателем 6 размещена на наземной ТРП 7. Крыло 4 через его центроплан 8 закреплено на корпусе 2 РН 1, буксировочный трос-фал 9 соединен с центропланом 8 крыла 4 РН 1 и самолетом 10, буксировочный трос-фал 11 соединен с самолетами 10, 12. Передний обтекатель 5 и хвостовой обтекатель 6 смонтированы на передней и хвостовой частях РН 1 соответственно. На хвостовом обтекателе 6 смонтированы стабилизирующие поверхности, образующие управляемые стабилизатор 13 и, например, вертикальное хвостовое оперение 14. При этом обтекатели 3, 5 и 6 выполнены с возможностью отделения их от корпуса 2 РН 1, например, с использованием детонирующих удлиненных зарядов или пирозамков, смонтированных на этих обтекателях, для разрушения силовых связей их с корпусом 2 РН 1 (на чертеже не показано). Крыло 3 снабжено элеронами 15, стабилизатор 13, например рулями высоты, а оперение 14, например рулями направления. В крыле 4 и его центроплане 8, в обтекателях 3, 5, 6 при необходимости могут быть выполнены полости под размещение элементов систем управления, энергоснабжения крыла 4, стабилизатора 13, хвостового оперения 14, РН 1 и др. систем, обеспечивающих функционирование АРК (на чертеже не показаны).
Тросы-фалы 9, 11, самолет 10, центроплан 8 крыла 4, обтекатель 3 крыла 4 образуют устройство сопряжения РН1 с самолетом-буксировщиком 12.
Эта система, включающая РН 1, самолеты 10, 12 и другие вышеупомянутые элементы, функционирует следующим образом.
Перед запуском космического аппарата наземная ТРП 7 подается на техническую позицию авиационного ракетного комплекса, где на нее производится погрузка снаряженной РН 1, например, незаправленной компонентами топлива со смонтированными на ней вышеупомянутыми элементами.
После погрузки снаряженной ракеты-носителя 1 на наземную ТРП 7 производятся заправка РН 1 топливом и проверки ее систем, а также систем ТРП 7 на функционирование.
После завершения всех работ по подготовке авиационного ракетного комплекса к запуску космического аппарата снаряженная ТРП 7 буксируется на взлетно-посадочную полосу (ВПП) 16 в точку начала движения ТРП 7 при взлете самолетов 10, 12 на пуск РН 1, где производится сцепление самолета 10 с центропланом 8 крыла 4 РН 1 с помощью буксировочного троса-фала 9 и с самолета 10 с самолетом 12 с помощью буксировочного троса-фала 11. В результате чего самолеты 10, 12 и ТРП 7 приведены в стартовое положение на ВПП 16.
Функционирование комплекса производится в следующей последовательности.
По команде от системы управления АРК на вылет в район пуска РН 1 одновременно на самолетах 10, 12 и ТРП 7 запускаются двигатели (для разгона ТРП 7 на ней установлены, например, двигатели 17 от вышеупомянутого базового самолета, например, Ил-76МТ (МД, МФ)). Тяги двигателей самолетов 10, 12 и ТРП 7 обеспечивают равные ускорения при движении их по ВПП 16.
По достижении заданных уровней тяг двигателей самолетов-буксировщиков 10, 12 и ТРП 7 подается команда на взлет (начало движения их по ВПП 16).
При этом обеспечиваются уровни тяг двигателей самолетов 10, 12, двигателей 17 ТРП 7, исключающие провисания тросов-фалов 9 и 11 до недопустимых уровней.
При движении самолетов 10, 12 и ТРП 7 по ВПП 16 на самолеты 10, 12 и РН 1 действуют подъемные силы, которые обеспечивают отрыв самолетов 10 и 12 от ВПП 16 и снаряженной РН 1 от ТРП 7 при достижении ими заданной скорости движения (˜280-300 км/час).
При отрыве самолетов 10 и 12 от ВПП 16 одновременно от ТРП 7 производится отделение РН 1 по команде, например, от системы управления АРК (РН 1 или ТРП 7) и начало полета самолетов 10, 12 в район пуска РН 1. По прибытии в район пуска самолеты 10, 12 и снаряженная РН 1 занимают заданные расчетные положения в пространстве по высотам, направлению и скорости полета, угловым параметрам (крен, тангаж, курс) обеспечивающие запуск РН 1. Пуск РН1 производится после отделения смонтированных на ее корпусе 2 обтекателя 3 с крылом 4 переднего обтекателя 5 и хвостового обтекателя 6.
Таким образом, представленный выше технический облик АРК с новыми отличительными признаками в сравнении с прототипом позволяет, в том числе:
- при меньших финансовых затратах и сроках, необходимых для создания АРК, увеличить его эффективность;
- повысить безопасность и надежность эксплуатации АРК;
- упростить технологию изготовления и отработки систем АРК при их создании;
- уменьшить технические, экономические и другие риски при создании АРК и его эксплуатации.
Предложенное в изобретении техническое решение открывает перспективное направление разработки АРК.
название | год | авторы | номер документа |
---|---|---|---|
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2006 |
|
RU2323855C2 |
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2005 |
|
RU2359881C2 |
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2006 |
|
RU2317921C1 |
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2006 |
|
RU2355601C2 |
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2006 |
|
RU2355602C2 |
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2006 |
|
RU2317920C1 |
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2005 |
|
RU2359870C2 |
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2005 |
|
RU2345927C2 |
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2005 |
|
RU2317923C2 |
АВИАЦИОННЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2009 |
|
RU2401777C1 |
Изобретение относится к области авиационно-космической техники и может быть использовано в авиационных ракетных комплексах космического назначения, преимущественно с тяжелыми баллистическими ракетами (массой более 100 тонн), оснащенными, например, жидкостными ракетными двигателями и запускаемыми в воздухе с целью выведения космических аппаратов на орбиты. Авиационный ракетный комплекс содержит самолеты, ракету-носитель воздушного запуска, устройство сопряжения ракеты-носителя с самолетами, выполняющими функции буксировщиков, системы, обеспечивающие их функционирование, и наземную транспортно-разгонную платформу, оснащенную двигателями для ее разгона. На корпусе ракеты-носителя дополнительно смонтированы обтекатель с установленным на нем крылом, а также носовой и хвостовой обтекатели. На хвостовом обтекателе установлены стабилизатор и вертикальное оперение. Обтекатели выполнены с возможностью их отделения от ракеты-носителя. Наземная транспортно-разгонная платформа выполнена на базе самолета, имеющего остаточные ресурс и срок службы. Данное техническое решение авиационного ракетного комплекса позволяет достичь увеличения дальности и высоты полета самолетов с буксируемой ракетой-носителем, увеличения выводимой на орбиту массы космических аппаратов. 2 з.п. ф-лы, 3 ил.
US 6029928 А, 29.02.2000 | |||
МНОГОРАЗОВЫЙ УСКОРИТЕЛЬ ПЕРВОЙ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ | 1999 |
|
RU2148536C1 |
СПОСОБ ВЗЛЕТА ЛЕТАТЕЛЬНОГО АППАРАТА С ДРУГОГО ЛЕТАТЕЛЬНОГО АППАРАТА В ПОЛЕТЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 1996 |
|
RU2099250C1 |
СПОСОБ ВЫВОДА ВОЗДУШНО-КОСМИЧЕСКОГО САМОЛЕТА В КОСМОС И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2085449C1 |
JP 4103498 A, 06.04.1992 | |||
US 5088663 A, 18.02.1992. |
Авторы
Даты
2008-05-10—Публикация
2006-04-27—Подача