Изобретение относится к нефтяной промышленности и может быть использовано на залежах со значительной нефтенасыщенной толщиной.
Известен способ водогазового воздействия на пласт посредством закачки воды и газа в нагнетательные скважины (Гусев С.В. Методы регулирования водогазового воздействия на пласт на примере опытного участка Самотлорского месторождения. - Нефтяное хозяйство, 1990, №3, с.35-39).
Способ не позволяет разрабатывать залежь с достижением высокой нефтеотдачи.
Наиболее близким к предложенному изобретению по технической сущности является способ разработки массивных нефтяных месторождений, включающий одновременную закачку в пласт через нагнетательные скважины газа при давлении не ниже давления насыщения нефти газом и воды, отбор нефти через добывающие скважины. Для увеличения выработки подошвенной части массивного нефтяного месторождения путем увеличения охвата пласта воздействием до начала закачки воды ведут закачку газа в кровельную часть пласта до прорыва к добывающим скважинам, затем с одновременной закачкой газа осуществляют закачку в подошвенную часть пласта воды при давлении ниже давления закачки газа (Патент РФ № 1547412, кл. Е21В 43/20, опублик. 1999.11.27 - прототип).
Известный способ не обеспечивает охвата пласта воздействием, что отрицательно сказывается на нефтеотдаче месторождения.
В изобретении решается задача повышения охвата пласта воздействием и за счет этого увеличения нефтеотдачи месторождения.
Задача решается тем, что в способе разработки нефтяного месторождения, включающем закачку водогазовой смеси через нагнетательные скважины, отбор продукции через добывающие скважины, согласно изобретению в качестве нагнетательных и добывающих скважин используют скважины с горизонтальными стволами в продуктивном пласте, горизонтальные стволы бурят в подошвенной части продуктивной части пласта в одной плоскости друг над другом вдоль длинной оси месторождения, горизонтальные стволы нагнетательных скважин размещают над горизонтальными стволами добывающих скважин, закачку водогазовой смеси производят циклически, циклическую закачку выполняют изменением давления нагнетания на нагнетательных скважинах, в качестве водогазовой смеси нагнетают водогазовую смесь при оптимальном соотношении объемов нагнетания воды и газа, определенном из условия пропорциональности отношения объемов мелких пор ниже среднего размера и крупных пор выше среднего размера в коллекторе, при этом вначале проводят закачку оторочки водогазовой смеси с обогащенным газом, а затем закачку водогазовой смеси с тощим газом.
Нагнетание водогазовой смеси возможно чередовать с нагнетанием воды.
Сущность изобретения
Известные способы разработки нефтяных месторождений не обеспечивает полного охвата пласта воздействием, что отрицательно сказывается на нефтеотдаче месторождения. В изобретении решается задача повышения охвата пласта воздействием и за счет этого увеличения нефтеотдачи месторождения. Задача решается следующим образом.
При разработке нефтяного месторождения ведут закачку водогазовой смеси через нагнетательные скважины и отбор продукции через добывающие скважины. В качестве нагнетательных и добывающих скважин используют скважины с горизонтальными стволами в продуктивном пласте. Горизонтальные стволы бурят в подошвенной части продуктивной части пласта в одной плоскости друг над другом вдоль длинной оси месторождения. Горизонтальные стволы нагнетательных скважин размещают над горизонтальными стволами добывающих скважин. Закачку водогазовой смеси производят циклически, циклическую закачку выполняют изменением давления нагнетания на нагнетательных скважинах. В качестве водогазовой смеси нагнетают водогазовую смесь при оптимальном соотношении объемов нагнетания воды и газа, определенном из условия пропорциональности отношения объемов мелких пор ниже среднего размера и крупных пор выше среднего размера в коллекторе. Вначале проводят закачку оторочки водогазовой смеси с обогащенным газом, а затем закачку водогазовой смеси с тощим газом. Нагнетание водогазовой смеси возможно чередовать с нагнетанием воды.
В подошвенной части пласта на определенном расстоянии между собой параллельно бурят горизонтальные стволы. Стволы бурят друг над другом в вертикальной плоскости и вдоль длинной оси структуры, чтобы созданная техногенная газовая шапка была адаптирована к структурным особенностям залежи нефти, а фронт вытеснения нефти совпадал с гравитационными силами и дренировал пласт по всему разрезу. Расстояние между стволами зависит от коллекторской характеристики и насыщающих пласт флюидов, вытесняющего агента и определяется моделированием пластовой системы. Длина горизонтальной части ствола также определяется моделированием.
В пласт нагнетают водогазовую смесь. При закачке за счет роста градиентов давления в пласте, увеличения объемного коэффициента и снижения вязкости нефти при растворении в ней газа, а также благодаря сегрегации газа в прикровельную часть пласта, а нефти в подошвенную часть пласта, увеличивается нефтеизвлечение пласта. Так как добывающая скважина расположена в подошвенной части пласта и приток нефти происходит по всей длине горизонтальной части ствола скважины и всего разреза пласта, то продуктивность скважины по нефти возрастает.
Для вытеснения нефти с различными углами падения крыльев структуры процесс вытеснения адаптируют к конкретным геолого-промысловым характеристикам пласта в районе расположения конкретной нагнетательной скважины. При размещении горизонтальной скважины вдоль оси структуры техногенная газовая шапка будет распространяться по структуре и охватывать весь продуктивный пласт.
Повышение нефтеизвлечения пласта может достигаться за счет изменения направления фильтрационных потоков при попеременном нагнетании водогазовой смеси и воды. Водогазовая смесь снижает приводимость самых проницаемых зон, сегрегирующийся газ вытесняет нефть из малопроницаемых прикровельных частей пласта, а закачиваемая обычная вода вытесняет нефть из приподошвенных частей пласта за счет капиллярных сил и гидродинамических сил кровельных частей пласта.
При водогазовом воздействии происходит циклическое чередование насыщенностей в пласте. Для пластов со смешанной смачиваемостью предполагается, что большие поры преимущественно гидрофобны, а малые гидрофильны. Пласты со смешанной смачиваемостью обычно представляются гидрофильной моделью фазовых проницаемостей потому, что изменения распределения флюидов в пласте смешанной смачиваемости незначительны в сравнении с гидрофильными пластами. После прохождения воды по пласту большие поры в гидрофильных пластах или частях пласта содержат остаточную нефть, содержание которой может быть снижено вытеснением ее в поровые каналы свободным несмачивающем породу газом. Вытеснение нефти может быть как смешивающимся, с развивающейся смешиваемостью и несмешивающимся. Условия смешиваемости обычно определяются лабораторными опытами.
Оптимальные условия при водогазовом воздействии достигаются при движении по пласту газа и воды с одинаковой скоростью. Это становится возможным в зоне водогазовой смеси в течение короткого промежутка времени, также имеет ограниченное распространение в пласте из-за различий в гравитационно-вязкостных силах при трехфазной фильтрации в неоднородном пласте, изменяя размеры пузырьков газа и содержание газа в водогазовой смеси
Основными параметрами процесса вытеснения являются объем нагнетания, водогазовое отношение, число циклов и объем оторочек. Водогазовое отношение и число циклов влияют на коэффициент охвата воздействием.
Повышения эффективности водогазового воздействия можно добиться путем изменения направления потоков, чередования оторочек газа и воды, циклического изменения давления нагнетания и дебитов.
Выбор оптимального водогазового отношения может улучшить охват пласта водогазовым воздействием. Поддержание свободного газа перед оторочкой воды в высокопроницаемом пласте позволяет создать условия для его проникновения в вышележащие зоны по всей длине пласта. Размеры зоны водогазовой смеси регулируются чередованием оторочек воды и газа. Уменьшение чередующихся с водой оторочек газа приводит к захвату всего газа, поступающего в высокопроницаемый пласт, предотвратив его сегрегацию и проникновение в низкопроницаемую часть.
Циклическое изменение давления нагнетания в неоднородных пластах создает неравновесные условия в зонах с различной нефтенасыщенностью. Неравновесное состояние капиллярных сил на контакте нефтенасыщенной и водонасыщенной зон пласта быстрее устраняется вместе с ускорением капиллярной пропитки воды в гидрофильных пластах в полуциклы с положительным градиентом давления. Вода, проникая в зоны пласта с высокой нефтенасыщенностью, вытесняет нефть, и удерживается в них капиллярными силами в полупериоды с отрицательным градиентом давления. В результате достигаются вытеснение и извлечение нефти из зон, не охваченных стационарной закачкой.
Циклическое водогазовое воздействие более эффективно в пластах, содержащих флюиды с высоким коэффициентом сжимаемости. Увеличение сжимаемости флюидов при данном виде воздействия благоприятно сказывается на перетоки и массоперенос между зонами с низкой и высокой проницаемостями. Нестационарное водогазовое воздействие расширяет возможности в применении технологии на пластах смешанной смачиваемости и гидрофобных, так как газ лучше проникает в гидрофобные части пласта, вытесняя нефть в высокопроницаемые зоны.
Оптимальное соотношение объемов нагнетания воды и газа при водогазовом воздействии определяют из условия пропорциональности отношения объемов мелких пор (ниже среднего размера) и крупных пор (выше среднего размера) в коллекторе.
Пример конкретного выполнения
Бурят вертикальную оценочную скважину. В процессе бурения отбирают керновый материал и пробы пластовых жидкостей. Производят геофизические исследования скважины и самой структуры. На основе полученных данных производят построение геолого-технологической модели. Путем моделирования пластовой системы определяют оптимальное расстояние между проектными добывающей и нагнетательной скважинами и длину горизонтальной части ствола скважины.
Бурят горизонтальные нагнетательную и добывающую скважины. В процессе бурения скважин отбирают керновый материал из продуктивной части пласта. Проводят исследование коллекторских свойств пласта и насыщающих флюидов вдоль пласта. На залежи, находящейся на глубине 4000 м, представленной неоднородным карбонатным пластом толщиной 80-100 м с температурой 120°С, пластовым давлением 40 МПа, нефтенасыщенностью 0,60 д. ед., пористостью 10%, проницаемостью 0,065 мкм2, с нефтью, имеющей плотность 800 кг/м3 при газовом факторе 80-90 м3/м3 и вязкость 30 мПа·с, поровый объем продуктивной части пласта составляет 30000 тыс. м3. Состав продукции пласта (%) представлен в таблице 1.
Проводят лабораторные исследования по определению минимального давления смешиваемости нефти с газом, предлагаемых для закачки в пласт.
Состав закачиваемого газа представлен в таблице 2.
Минимальное давление смешиваемости представлено в таблице 3.
Анализ полученных значений показывает, что при закачке обогащенного газа давление смесимости снижается. Кроме того, коэффициент вытеснения нефти при закачке с обогащенным газом выше, чем при нагнетании тощего. Поэтому в начальной стадии проводят закачку оторочки водогазовой смеси с обогащенным газом. Закачка более дорогого обогащенного газа позволила обеспечить смешивающее вытеснение нефти газом при меньшем пластовом давлении и соответственно и давлении нагнетания. Затем производят закачку водогазовой смеси с тощим газом. За счет испарения тяжелых компонент, находящихся в нефти, в газовую фазу обеспечивается развивающееся смешивающееся вытеснение нефти вытесняющим агентом, состоящего из тощего газа и воды.
В лабораторных условиях определили коэффициенты вытеснения нефти газом при различных значениях давления.
Средний размер пор по рассматриваемому объекту составляет 10 мкм. Поровый объем менее этого размера составляет 40%. Высокопористая часть пласта составляет 60% от продуктивной части коллектора. Таким образом, водогазовое отношение составит 0,4 к 0,6 в пластовых условиях. Для вытеснения нефти из этой части пласта необходимо будет закачать газ за весь срок разработки залежи 18000 тыс. м3 в пластовых или 7200 млн. м3 в поверхностных условиях. Проведенными промысловыми исследованиями установлено, что приемистость скважины по водогазовой смеси в пластовых условиях составляет 1200 м3/сут (480 м3/сут воды и 720 м3/сут газа или 288 тыс. м3/сут в поверхностных условиях) при давлении нагнетания на устье 57 МПа. Производят закачку водогазовой смеси с обогащенным газом в этом соотношении. Происходит смешивающее вытеснение нефти из пласта, который при рабочем давлении нагнетания 57 МПа за счет высокой подвижности газа преимущественно поступает в высокопроницаемую часть продуктивного пласта. При увеличении приемистости нагнетательной скважины переходят на закачку водогазовой смеси с тощим газом в этом же соотношении.
Тощий газ внедряется в газонасыщенную зону пласта и за счет испарения фракций с нефти обогащается. Происходит гравитационное разделение фаз. Для снижения неравномерности вытеснения нефти водогазовой смесью после выхода добывающих скважин на стационарный режим эксплуатации переходят на циклическую закачку вытесняющего агента. При прорыве газа в добывающую скважину отбор продукции также ведут периодически.
Сравнение эффективности применения предлагаемого способа приведено в таблице 4, откуда следует, что предложенный способ позволяет добыть дополнительно 3520 тыс. т нефти.
Применение предложенного способа позволит повысить нефтеотдачу нефтяного месторождения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ С ПОДОШВЕННОЙ ВОДОЙ | 2006 |
|
RU2307239C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ | 2007 |
|
RU2326235C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ ТЕПЛОВЫМ И ВОДОГАЗОВЫМ ВОЗДЕЙСТВИЕМ В СИСТЕМЕ ВЕРТИКАЛЬНЫХ, ГОРИЗОНТАЛЬНЫХ И МНОГОЗАБОЙНЫХ СКВАЖИН | 2013 |
|
RU2524580C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ ТЕПЛОВЫМ И ВОДОГАЗОВЫМ ВОЗДЕЙСТВИЕМ | 2013 |
|
RU2534306C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ С ГАЗОВОЙ ШАПКОЙ (ВАРИАНТЫ) | 2006 |
|
RU2312983C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ОТОРОЧКИ НЕФТЕГАЗОВОГО МЕСТОРОЖДЕНИЯ ПОДОШВЕННОГО ТИПА | 2019 |
|
RU2728753C1 |
СПОСОБ РАЗРАБОТКИ ЗАЛЕЖЕЙ НЕФТИ С ГАЗОВОЙ ШАПКОЙ И ПОДОШВЕННОЙ ВОДОЙ | 2008 |
|
RU2386804C1 |
СПОСОБ РАЗРАБОТКИ ЗАЛЕЖИ УГЛЕВОДОРОДОВ В НИЗКОПРОНИЦАЕМЫХ ОТЛОЖЕНИЯХ | 2015 |
|
RU2625829C2 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ОТОРОЧКИ В СЛОЖНОПОСТРОЕННОМ КАРБОНАТНОМ КОЛЛЕКТОРЕ | 2012 |
|
RU2509878C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ | 2009 |
|
RU2498056C2 |
Изобретение относится к нефтяной промышленности и может быть использовано на залежах со значительной нефтенасыщенной толщиной. Обеспечивает повышение охвата пласта воздействием и за счет этого увеличение нефтеотдачи месторождения. Сущность изобретения: по способу ведут закачку водогазовой смеси через нагнетательные скважины, отбор продукции через добывающие скважины. В качестве нагнетательных и добывающих скважин используют скважины с горизонтальными стволами в продуктивном пласте. Горизонтальные стволы бурят в подошвенной части продуктивной части пласта в одной плоскости друг над другом вдоль длинной оси месторождения. Горизонтальные стволы нагнетательных скважин размещают над горизонтальными стволами добывающих скважин. Закачку водогазовой смеси производят циклически, циклическую закачку выполняют изменением давления нагнетания на нагнетательных скважинах. В качестве водогазовой смеси нагнетают водогазовую смесь при оптимальном соотношении объемов нагнетания воды и газа, определенном из условия пропорциональности отношения объемов мелких пор ниже среднего размера и крупных пор выше среднего размера в коллекторе. При этом вначале проводят закачку оторочки водогазовой смеси с обогащенным газом, а затем закачку водогазовой смеси с тощим газом. Нагнетание водогазовой смеси чередуют с нагнетанием воды. 1 з.п. ф-лы, 4 табл.
SU 1547412 A1, 27.11.1999 | |||
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ | 2004 |
|
RU2260686C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ, ПОДСТИЛАЕМОЙ ВОДОЙ | 1998 |
|
RU2149984C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ | 2002 |
|
RU2231631C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2266396C2 |
Способ вытеснения нефти из пласта | 1991 |
|
SU1810505A1 |
RU 2060378 C1, 20.05.1996 | |||
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ | 1997 |
|
RU2123586C1 |
СПОСОБ ОБРАБОТКИ СКВАЖИНЫ | 1992 |
|
RU2049227C1 |
US 4049053 А, 20.09.1977. |
Авторы
Даты
2008-06-10—Публикация
2007-07-16—Подача