Изобретение относится к генераторам переменного расхода, предназначенным для создания в потоке жидкости колебаний различных форм при исследовании метрологических характеристик измерителей артериального давления и частоты сердечных сокращений, и может найти применение в приборостроительной промышленности при метрологической аттестации этих средств измерений.
Известны генераторы переменного расхода для определения динамических характеристик расходомеров (Генератор переменного расхода. Отчет №Б060014. Всесоюзный научно-технический информационный центр. М., 1974) - [1].
Известен генератор переменного расхода, который использует изменение площади прямоугольной прорези, расположенной по образующей цилиндрического статора (Пульсатор расхода ПР-1. Техническое описание П1-00-00 ТО, 1973) - [2]. Контролируемая среда подается во внутреннюю полость статора по входному трубопроводу. Изменение размеров площади прорези происходит при вращении ротора в форме цилиндра, усеченного плоскостью под углом к его продольной оси. При этом значение расхода через указанную выше прорезь при равномерном вращении ротора изменяется по синусоидальному закону. Прошедший через прорезь изменяемой площади поток поступает в испытательный участок в виде трубопровода с установленным в нем испытуемым расходомером и далее - в сливную емкость через сливной трубопровод. Частота пульсаций расхода определяется скоростью вращения ротора. Изменяя скорость вращения ротора и регистрируя показания испытуемого расходомера, можно определять частотную характеристику испытуемого расходомера. Этот известный генератор характеризуется трудностью получения пульсаций расхода требуемой амплитуды и формы в широком диапазоне частот, так как для этого необходимо управлять движением большой массы жидкости, а это требует создания значительного давления контролируемой среды, что в ряде случаев практически не осуществимо. Кроме того, в генераторах такой конструкции имеют место значительные перепады давления, что вносит дополнительные погрешности в результаты испытаний, не говоря уже о наличии больших вибраций трубопровода, особенно на низких частотах.
Известно устройство «Генератор переменного расхода» по авторскому свидетельству СССР №637722, G01F 25/00, опубл. 15.12.78. Бюл. №46 - [3] для определения динамических характеристик расходомеров, содержащий ротор в форме цилиндра, усеченного плоскостью под углом к его продольной оси, пустотелый цилиндрический статор с прорезью прямоугольной формы по образующей цилиндра на диаметрально противоположных сторонах. Ротор соединен с валом двигателя. Внутренняя полость статора соединена с входным трубопроводом, подающим контролируемую среду, и через прорези сообщается с отрезками двух трубопроводов, в одном из которых установлен испытуемый расходомер. Другие концы трубопроводов присоединены к выходному трубопроводу через дроссельное устройство.
Недостатком такого генератора является возможность его использования только для исследования синусоидальной формы импульса, кроме того, в генераторах такой конструкции имеют место перепады давления, что вносит дополнительные погрешности в результаты испытаний.
Наиболее близким к заявленному изобретению является изобретение по авторскому свидетельству SU №1013764 A, G01F 25/00. Гидромеханический пульсатор, опубликованный 23.04.83. Бюл. №15 - [4], содержащий цилиндрический корпус с входным и двумя выходными окнами прямоугольной формы, расположенными во взаимно перпендикулярных плоскостях, и с установленным в корпусе цилиндрическим ротором, который выполнен полым, с нечетным числом окон, идентичных выходным окнам корпуса, причем суммарный размер окон по окружности равен 180°.
Недостатком такого пульсатора является наличие гидравлического удара при воспроизведении синусоидального пульсирующего потока, что приводит к возникновению дополнительных погрешностей.
Технический результат, на достижение которого направлено заявляемое изобретение, заключается в расширении возможностей получения пульсаций расхода с различными законами за счет изменения форм окон ротора и статора, расположенных на разных уровнях.
Технический результат достигается тем, что в пульсаторе расхода, содержащем статор с выходными окнами и установленный в нем соосно цилиндрический полый ротор, соединенный с валом двигателя и имеющий выходные окна, новым является то, что выходные окна ротора n и статора m расположены на разных уровнях, при этом окна статора и съемного ротора выполнены в виде многоугольников, а общее число окон статора не превышает (n≥m) или больше (m>n) общего числа окон ротора.
Сущность изобретения поясняется на фиг.1, 2, где
Фиг.1 - пульсатор расхода;
Фиг.2а - сечение ротора плоскостью А-А;
Фиг.2б - сечение ротора плоскостью Б-Б.
1 - ротор; 2 - статор; 3 - левые окна ротора; 4 - правые окна ротора; 5 - входной трубопровод; 6 - правый трубопровод; 7 - левый трубопровод; 8 - корпус; 9 - муфта; 10 - редуктор; 11 - двигатель; 12 - блок управления.
Пульсатор расхода содержит входной трубопровод 5, два выходных трубопровода 6 и 7, статор 2, в котором установлен вращающийся вал двигателя 11 с закрепленным на нем цилиндрическим ротором 1. Входной трубопровод 5 соединен с правым 6 и левым 7 трубопроводами при помощи статора 2. Ротор 1 выполнен полым и имеет n-число окон, расположенных на разных уровнях. Статор 2 представляет собой пустотелый цилиндр с окнами, расположенными по образующей цилиндра на разных уровнях. Число окон статора 2 равно m. Статор 2 закреплен с корпусом 8, в котором в подшипниках установлен вал ротора 1. Ротор 1 является съемным и отсоединяется от статора 2, а также от вала двигателя 11 с помощью муфты 9. Изменение частоты вращения ротора 1 осуществляется через редуктор 10, соединенный с блоком управления 12, к которому электрически подключен и двигатель 11.
С целью получения различных форм пульсирующего потока жидкости число окон ротора 1 и статора 2 может быть различным. Так число окон ротора 1 может быть больше числа окон статора 2 (n>m) или наоборот, (n≤m).
Контролируемая жидкость по входному трубопроводу 5 поступает в полость статора 2. В зависимости от совмещений окон ротора 1 с окнами статора 2 жидкость проходит по выходным трубопроводам 6 или 7. При этом расход жидкости определяется площадью окна, не перекрытой в данный момент ротором 1.
Максимальный расход жидкости в выходном трубопроводе достигается при полном совмещении одного из окон ротора 1 с окном статора 2, а минимальный - при полном перекрытии окна статора 2.
Для получения пульсаций расхода с различными законами изменения используют роторы 1 с различными формами окон, например, в форме различных многоугольников, например, прямоугольника, квадрата, параллелограмма, трапеции и т.д. Ширина прямоугольного окна в 2 раза больше радиуса цилиндра R, а длина окна составляет πR. Суммарный размер окон по окружности ротора 1 равен 2πR.
Частота пульсаций обуславливается скоростью вращения ротора 1, а амплитуды - величиной расхода. Вследствие того что суммарная площадь условного прохода окон при работе пульсатора остается постоянной (при n=m), перепада давления во входном трубопроводе не возникает, что сводит к минимуму искажения формы и амплитуды колебаний расхода и улучшает эксплуатационные характеристики пульсатора.
Для получения плавно изменяющихся пульсаций расхода с различными законами изменения и недопущения гидравлического удара окна ротора 1 расположены на разных уровнях, причем уровни окон ротора 1 соответствуют уровням окон статора 2.
Пульсатор работает следующим образом.
В блок управления 12 задают частоту вращения вала двигателя 11. При вращении вала двигателя 11 с укрепленным на нем цилиндрическим ротором 1 окна 3 и 4 ротора 1 периодически совпадают с выходными окнами статора 2, причем момент совмещения окон в левом и правом трубопроводах 6 и 7 находится в противофазе, т.е. при полном совмещении одного из окон ротора 1 с окном выходного трубопровода окно другого трубопровода в этот момент времени полностью закрыто. Это достигается при полном совмещении окон статора 2 с окнами ротора 1. Таким образом, если площадь одного окна статора 2 увеличивается, то площадь другого окна уменьшается и наоборот.
Выбирая ротор 1 с различными формами его окон, изменяют форму переменного генерируемого расхода. Для замены ротора 1 отсоединяют муфту 9 от вала двигателя 11, а затем отсоединяют и корпус 8.
Таким образом, предложен пульсатор расхода, в котором расширение возможностей получения пульсаций расхода с различными законами изменения осуществляется за счет изменения форм окон ротора, расположенных на разных уровнях, при этом решение пульсатора не сложно в исполнении, просто и надежно в работе.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ГЕНЕРАЦИИ КОЛЕБАНИЙ | 2014 |
|
RU2554309C1 |
ГЕНЕРАТОР ПУЛЬСИРУЮЩИХ ПОТОКОВ | 2011 |
|
RU2477839C1 |
УСТРОЙСТВО ГЕНЕРАЦИИ КОЛЕБАНИЙ | 2014 |
|
RU2554691C1 |
ГЕНЕРАТОР ПЕРЕМЕННОГО РАСХОДА ЖИДКОСТИ (ВАРИАНТЫ) | 2006 |
|
RU2318190C2 |
УСТАНОВКА ПУЛЬСИРУЮЩИХ ПОТОКОВ ЖИДКОСТИ ДЛЯ КОМПЛЕКТНОЙ ПОВЕРКИ АВТОМАТИЗИРОВАННЫХ СФИГМОМАНОМЕТРОВ | 2011 |
|
RU2477618C1 |
УСТРОЙСТВО ДЛЯ ПОВЕРКИ АВТОМАТИЗИРОВАННЫХ СФИГМОМАНОМЕТРОВ | 2008 |
|
RU2393758C1 |
РАСХОДОМЕР | 1992 |
|
RU2057295C1 |
КОЛОКОЛЬНАЯ РАСХОДОМЕРНАЯ УСТАНОВКА ДЛЯ ГАЗА | 1992 |
|
RU2039943C1 |
РЕГЕНЕРАТОР ВОДЫ ПЛАВАТЕЛЬНЫХ БАССЕЙНОВ | 2005 |
|
RU2293709C2 |
Генератор переменного расхода | 1976 |
|
SU637722A1 |
Изобретение относится к генераторам переменного расхода и может использоваться при метрологической аттестации измерителей артериального давления и частоты сердечных сокращений. Пульсатор расхода содержит статор с выходными окнами, в котором соосно установлен съемный цилиндрический полый ротор с выходными окнам, соединенный с валом двигателя. Выходные окна ротора n и статора m расположены на разных уровнях и имеют форму многоугольников. Общее число окон статора не превышает (n≥m) или больше (m>n) общего числа окон ротора. Изобретение обеспечивает создания в потоке жидкости пульсаций расхода с различными законами изменения. 2 ил.
Пульсатор расхода, содержащий статор с выходными окнами и установленный в нем соосно цилиндрический полый ротор, соединенный с валом двигателя и имеющий выходные окна, отличающийся тем, что выходные окна ротора n и статора m расположены на разных уровнях, при этом окна статора и съемного ротора выполнены в виде многоугольников, а общее число окон статора не превышает (n≥m) или больше (m>n) общего числа окон ротора.
Гидромеханический пульсатор | 1978 |
|
SU1013764A1 |
Генератор переменного расхода | 1976 |
|
SU637722A1 |
Устройство для динамической градуировки расходомеров | 1984 |
|
SU1264007A1 |
Пульсатор | 1989 |
|
SU1622663A1 |
Авторы
Даты
2008-06-20—Публикация
2006-06-05—Подача