МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА Российский патент 2008 года по МПК G21C3/28 G21C3/62 

Описание патента на изобретение RU2328781C1

Изобретение относится к области ядерной энергетики, в частности к микросферическому топливу тепловыделяющих элементов ядерных реакторов.

Микротвэл ядерного реактора - это топливная микросфера из ядерного материала со слоями защитного покрытия (Беденг Д., Газоохлаждаемые высокотемпературные реакторы, пер. с нем., М., Атомиздат. 1975, 224 с.).

В качестве защитных покрытий используют пироуглерод различной плотности, карбиды кремния и циркония (см., например. Gulden T.D., Nickel H., Preface coated particle fuels, Nucl. TechnoL, Vol.35, September, 1977, p.206-213).

Защитные покрытия микротвэлов ядерного реактора выполняют многоцелевые функции:

- удержание газообразных и твердых продуктов деления в пределах микротвэла, снижая тем самым затраты на защиту и эксплуатацию конструкций, находящихся вне активной зоны реактора, обеспечивая возможность использования теплоносителя (гелия) без промежуточного теплообменника для выработки электроэнергии, например, по газотурбинному циклу;

- компенсация напряжений, возникающих из-за несоответствий в коэффициентах линейного термического расширения материала топливной микросферы и высокоплотных слоев покрытия;

- защита топливного материала и силового, например карбидокремниевого, слоя от охрупчивания, коррозии в теплоносителе или от примесей, особенно металлических, в материале твэла;

- создание свободного объема для локализации газообразных продуктов деления в ходе облучения - эту функцию выполняет буферный пироуглерод - первый от топливной микросферы защитный высокопористый слой.

Толщины покрытий, вид топлива и характеристики топливных микросфер микротвэлов оптимизируются применительно к конкретным условиям работы реактора.

В процессе облучения каждый из защитных слоев микротвэла взаимосогласованно противодействует выходу газообразных и твердых продуктов деления за пределы микротвэла: высокопористый пироуглерод защищает высокоплотный пироуглерод от прямой бомбардировки ядрами отдачи и локализует газообразные продукты деления, внутренний высокоплотный пироуглерод является первым диффузионным барьером по отношению к газообразным и твердым продуктам деления, одновременно защищая последующий слой карбида кремния от коррозионного воздействия на него твердых продуктов деления, слой карбида кремния, в силу своих превосходных физико-механических и теплофизических характеристик, является основным силовым слоем микротвэла и диффузионным барьером по отношению, прежде всего, к твердым продуктам деления.

Целостность многослойного покрытия микротвэла в процессе облучения зависит в первую очередь от степени структурных изменений пироуглерода. Поведение пироуглеродных покрытий при облучении быстрыми нейтронами во многом аналогично поведению других углеграфитовых материалов: анизотропия свойств приводит к различным размерным изменениям в зависимости от ориентации кристаллографических осей (Baier J., Uber den Einfluss des sxhnellen Neutrzonenflussen auf das mechanische Verhalten Beschichteter Drennstoffleilchen in HTR, JuL-1038, Julich, 1974).

В направлении, параллельном плоскости осаждения пироуглерода, происходит значительная усадка, зависящая от температуры облучения и исходной плотности материала. В направлении, перпендикулярном плоскости осаждения, происходит первоначальная усадка, которая с увеличением флюенса нейтронов переходит в распухание.

Степень размерной стабильности пироуглерода связана с изотропностью материала. Анизотропия радиационно-размерных изменений под облучением приводит к росту напряжений. В результате на внутренней поверхности пироуглеродного слоя, где напряжения максимальны, появляются трещины. Помимо нарушения взаимосогласованного сосуществования системы слоев защитного покрытия микротвэла, образующиеся копьевидные усадочные трещины открывают прямой доступ монооксида углерода и твердых продуктов деления к основному силовому слою, вызывая его коррозию.

Карбид кремния при температуре эксплуатации 1000°С и более является эффективным диффузионным барьером по отношению к большинству продуктов деления, обладает высокой прочностью и теплопроводностью, в существенно меньшей степени, чем пироуглерод, подвержен радиационным размерным изменениям (Price R.J., Properties of silicon carbide for nuclear fuel particle coatings. Nuclear technology, vol.35,2, p.320-336).

Известен микротвэл ядерного реактора, содержащий топливную микросферу на основе двуокиси урана и многослойное защитное покрытие, в котором первый от топливной микросферы слой выполнен из пироуглерода низкой плотности, второй слой - из высокоплотного изотропного пироугдерода, третий слой - из карбида циркония, четвертый слой - из высокоплотного изотропного пироуглерода (Minato К., Ogawa Т., Fucuda К., Fission products release from ZrC coated particles during post-irradiation heating at 1600°C. J. of Nucl. Mater., vol.224, 2, 1995, p.85-92).

Недостатком указанного микротвэла является низкая радиационно-химическая стойкость слоя карбида циркония по отношению к таким окислителям, как Н2О, СО, СО2. Карбид циркония также обладает низкой стойкостью по отношению к металлам типа Fe, Cr, Ni, Co, которые могут находиться в виде примесей в матрице твэла, либо являться конструкционными материалами топливных сборок.

Известен также микротвэл ядерного реактора, содержащий топливную микросферу на основе двуокиси урана и трехслойное защитное покрытие, первый слой которого, нанесенный на топливную микросферу, выполнен из низкоплотного пироуглерода. Следующий, второй слой, выполнен из высокоплотного изотропного пироуглерода, а третий слой - из композиции карбид циркония-пироуглерод (Каае J.L., Sterling S.A., Yang L., Improvements in the performance of nuclear fuel particles offered by silicon-alloyed carbon coating. Nuclear Technology, vol.35, September 1977, p.536-547).

Недостатком этого микротвэла является также низкая коррозионная стойкость композиции карбид кремния-пироуглерод по отношению к Н2О, СО, СО2, металлам типа Fe, Cr, Ni, Co.

Известен микротвэл ядерного реактора с топливной микросферой на основе (Pu0,2U0,8)O2-x и трехслойным защитным покрытием, в котором первый от топливной микросферы слой выполнен из пироуглерода низкой плотности толщиной 45 мкм, второй слой - из высокоплотного пироуглерода толщиной 5 мкм и наружный слой - из карбида кремния толщиной около 50 мкм (Donne M.D.,Shumacher G., Considaration of PyC and SiC coated oxide particles for gas-cooled fast reactor application, J. Of Nucl. Mater., 1971, v.40, p.27-40).

К недостаткам такого микротвэла следует отнести высокую повреждаемость хрупкого карбидокремниевого слоя при механических нагружениях, а также низкую его коррозионную стойкость в щелочных средах и при контактах с большинством металлов, особенно Fe, Ni, Cr, Ti, Al, Nb, Zr, Та и др. Указанные факторы существенно уменьшают ресурс эксплуатации микротвэла, т.е. глубину выгорания в нем топлива.

Наиболее близким к заявляемому микротвэлу является микротвэл ядерного реактора, содержащий топливную микросферу на основе диоксида урана и многослойное защитное покрытие, в котором первый от топливной микросферы слой выполнен из пироуглерода низкой плотности, второй слой - из высокоплотного изотропного пироуглерода, третий слой из карбида кремния, четвертый слой - из высокоплотного изотропного пироуглерода (Charollais F., Fonquemie S., Parrais С. at. al., CEA and AREVA Rand D on HTR fuel fabrication and presentation of CAPRI experimental manufacturing line, Nuclear Engineering, vol.236 (2006), p.534-542). Этот микротвэл выбран в качестве прототипа.

Такой микротвэл характеризуется повышенной повреждаемостью основного силового слоя - слоя карбида кремния. При достижении высокого выгорания топлива этот слой находится в условиях высокого внутреннего давления газообразных продуктов деления и вероятность его хрупкого разрушения весьма высока. С другой стороны, внешний слой пироуглерода подвержен радиологическому окислению водным теплоносителем и образует непрерывный ряд твердых растворов с примесными элементами теплоносителя, например, Fe, Ni, Cr, Mn, которые интенсивно взаимодействуют с карбидным слоем. Низкие защитные свойства внешнего слоя пироуглерода в условиях длительной эксплуатации микротвэла в окислительной среде и в присутствии металлов также вызывают повышенную повреждаемость карбидокремниевого слоя. Указанные факторы определяют основной недостаток прототипа - ограниченность ресурса эксплуатации.

Предлагаемый микротвэл ядерного реактора содержит топливную микросферу и многослойное защитное покрытие, состоящее из последовательно нанесенных на микросферу слоев низкоплотного пироуглерода, высокоплотного изотропного пироуглерода, карбида кремния и сиалона Si3Al3О3N5.

Каждый из слоев предлагаемого микротвэла выполняет следующие функции:

- первый слой из пироуглерода низкой плотности создает свободный объем для локализации газообразных продуктов деления;

- второй - высокоплотный изотропный пироуглерод является диффузионным барьером для газообразных продуктов деления;

- третий слой из SiC является основным силовым слоем, противостоящим высокому внутреннему давлению газообразных продуктов деления и служащим диффузионным барьером для твердых продуктов деления;

- четвертый, внешний слой, выполненный из Si3Al3О3N5, служит защитой хрупкого карбидокремниевого слоя от механических повреждений, поскольку Si3Al3О3N5 является более пластичным керамическим материалом по сравнению с SiC. Кроме того, этот слой защищает слой SiC от коррозионного воздействия теплоносителя (воды) и механических примесей теплоносителя (например, катионов Fe, Ni, Cr и т.п.), а также при непосредственном контакте микротвэла с металлическими конструкциями активной зоны ядерного реактора.

Таким образом, предлагаемый микротвэл превосходит известные микротвэлы по глубине выгорания топлива и, соответственно, обеспечивает повышение эксплуатационного ресурса ядерного реактора.

Приведем пример осуществления предлагаемого технического решения. Четырехслойное защитное покрытие на топливные микросферы из диоксида урана диаметром 500 мкм последовательно осаждают в кипящем слое по следующим режимам:

- пироуглерод низкой плотности (температура пиролиза 1450°С, концентрация С2Н2 в смеси с аргоном 60 об.%; суммарный расход газовой смеси 1500 л/ч);

- высокоплотный изотропный пироуглерод (температура пиролиза 1300°С, концентрация С3Н6 в смеси с аргоном 30 об.%; суммарный расход газовой смеси 1400 л/ч);

- карбид кремния (температура пиролиза 1550°С; концентрация CH3SiCl3 - 1,0 об.%, суммарный расход водорода 1500 л/ч);

- слой состава Si3Al3O3N5 (температура пиролиза 1300-1350°С, концентрация SiCl4 - 3 об.%, NH3 - 5,0 об.%, AlCl3 - 3 об.%, H2O - 1,5 об.%; расход азота в испаритель SiCl4 - 10,0 л/мин, температура испарителя SiCl - 20°С, расход азота в испаритель AlCl3 - 5,0 л/мин, температура испарителя AlCl3 - 200-250°С, расход водорода - 10 л/мин, расход аргона в дозатор NH3 - 3,0 л/мин).

В таблице приведено сопоставление ресурса эксплуатации прототипа и предлагаемого микротвэла.

ПараметрПрототипПредлагаемый микротвэлОграничение по величине флюенса быстрых нейтронов, нейтрон/см2до 1·1021до 40-1021Максимально допустимая температура эксплуатации топлива до начала разгерметизации покрытий, °С700-8001100-1300Глубина выгорания топлива на момент разгерметизации покрытий, % тяжелых атомов(5-7)(1) до 10(1)(10-12)(1) до 15(2)

Примечание. (1) Глубина выгорания топлива ограничена указанными величинами при одновременном окислительном воздействии теплоносителя со щелочной реакцией, растворенных в нем катионов (Fe3+, Cr3+ и т.п.) и наличии непосредственного контакта микротвэлов с металлическими конструкциями активной зоны.

(2) Указанные значения глубины выгорания соотносятся с температурами эксплуатации 800 и 1300°С.

Похожие патенты RU2328781C1

название год авторы номер документа
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2006
  • Гаврилин Сергей Сергеевич
  • Денискин Валентин Петрович
  • Курбаков Сергей Дмитриевич
  • Федик Иван Иванович
  • Черников Альберт Семенович
RU2325712C1
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2015
  • Белеевский Андрей Владимирович
  • Голубев Игорь Евгеньевич
  • Морозов Николай Викторович
  • Перцев Андрей Анатольевич
  • Стрельцов Олег Александрович
RU2603018C1
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2006
  • Денискин Валентин Петрович
  • Курбаков Сергей Дмитриевич
  • Федик Иван Иванович
  • Черников Альберт Семенович
RU2325710C1
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2007
  • Денискин Валентин Петрович
  • Курбаков Сергей Дмитриевич
  • Федик Иван Иванович
RU2333550C1
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2006
  • Денискин Валентин Петрович
  • Курбаков Сергей Дмитриевич
  • Федик Иван Иванович
  • Черников Альберт Семенович
RU2326457C1
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2008
  • Денискин Валентин Петрович
  • Курбаков Сергей Дмитриевич
  • Федик Иван Иванович
  • Черников Альберт Семенович
RU2370835C1
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2014
  • Перцев Андрей Анатольевич
  • Морозов Николай Викторович
  • Голубев Игорь Евгеньевич
  • Макаров Владимир Михайлович
  • Белеевский Андрей Владимирович
RU2567507C1
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОТВЭЛОВ ЯДЕРНОГО РЕАКТОРА 2015
  • Белеевский Андрей Владимирович
  • Голубев Игорь Евгеньевич
  • Морозов Николай Викторович
  • Перцев Андрей Анатольевич
RU2603020C1
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2007
  • Денискин Валентин Петрович
  • Курбаков Сергей Дмитриевич
  • Федик Иван Иванович
RU2333555C1
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2006
  • Денискин Валентин Петрович
  • Курбаков Сергей Дмитриевич
  • Федик Иван Иванович
  • Черников Альберт Семенович
RU2328783C1

Реферат патента 2008 года МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА

Изобретение относится к области ядерной энергетики, в частности к микросферическому топливу тепловыделяющих элементов ядерных реакторов. Микротвэл ядерного реактора содержит топливную микросферу и многослойное защитное покрытие, состоящее из последовательно нанесенных на микросферу слоев низкоплотного пироуглерода, высокоплотного изотропного пироуглерода, слоя карбида кремния и слоя состава Si3Al303N5. Изобретение обеспечивает повышение эксплуатационного ресурса ядерного реактора. 1 табл.

Формула изобретения RU 2 328 781 C1

Микротвэл ядерного реактора, содержащий топливную микросферу и многослойное защитное покрытие, состоящее из последовательно нанесенных на микросферу слоев низкоплотного пироуглерода, высокоплотного изотропного пироуглерода и карбида кремния, отличающийся тем, что микротвэл в покрытии содержит слой состава Si3Al3O3N5, нанесенный на слой карбида кремния.

Документы, цитированные в отчете о поиске Патент 2008 года RU2328781C1

CHAROLLAIS F
et al
CEA and AREVA Rand D on HTR fuel fabrication and presentation of CAPRI experimental manufacturing line
Nuclear Engineering, vol.236, 2006, p.534-542
АКТИВНАЯ ЗОНА УРАН-ГРАФИТОВОГО ВЫСОКОТЕМПЕРАТУРНОГО ЯДЕРНОГО РЕАКТОРА 2004
  • Жуков Николай Анатольевич
  • Гришанин Евгений Иванович
  • Андреев Леонид Михайлович
  • Фонарев Борис Ильич
  • Филиппов Геннадий Алексеевич
  • Фальковский Лев Наумович
RU2277730C1
JP 3108692 A, 08.05.1991
JP 11202072 A, 30.07.1999
Устройство для садки быков при взятии спермы 1986
  • Капрельянц Нежде Таргатович
  • Осташко Федор Иванович
SU1371699A1

RU 2 328 781 C1

Авторы

Денискин Валентин Петрович

Курбаков Сергей Дмитриевич

Федик Иван Иванович

Черников Альберт Семенович

Даты

2008-07-10Публикация

2006-12-18Подача