Изобретение относится к способам идентификации объекта и может быть использовано для повышения надежности защиты от подделки и контроля подлинности различных ценных документов и изделий.
Из уровня техники известен способ защиты объекта от подделки путем нанесения информационной идентифицирующей метки с ее фиксацией посредством клеевого слоя к поверхности защищаемого объекта (RU 2035315 C1, B44F 1/12, 1995; RU 2077071 C1, G07D 5/00, 1997; FR 2331455, G07D 7/00, 1977; DE 3628353, B44F 1/12, 1988). Основным недостатком такого способа является возможность подмены информационной идентифицирующей метки, в качестве которой, как правило, используют голограммы, что снижает надежность защиты от подделки самого объекта.
Известен также способ контроля подлинности объекта, включающий облучение - освещение светочувствительного элемента источником света в нормированном интервале длин волн, прием световой энергии фотодатчиком и сравнение с эталонным значением (RU 2123722 C1, G07D 7/06, 1998; RU 2115169 C1, G07D 7/12, 1998). Однако в процессе эксплуатации контролируемого объекта его светочувствительный элемент в ряде случаев может изменять свои оптические свойства, что при сравнении с эталоном приводит к неверному результату.
Изобретение направлено на повышение надежности защиты объекта от подделки и контроля его подлинности.
Решение поставленной задачи обеспечивается тем, что в способе защиты объекта от подделки путем нанесения информационной идентифицирующей метки с ее фиксацией посредством клеевого слоя к поверхности защищаемого объекта, согласно изобретению в состав клеевого слоя вводят светочувствительный элемент - белок бактериородопсин, при этом информационную идентифицирующую метку или ее часть выполняют прозрачной, а соответствующей участок поверхности защищаемого объекта выполняют прозрачным или с зеркально отражающим покрытием.
Кроме того, в способе контроля подлинности защищаемого от подделки объекта, снабженного светочувствительным элементом, включающем освещение светочувствительного элемента источником света в нормированном интервале длин волн, прием световой энергии и сравнение с эталонным значением, согласно изобретению в качестве светочувствительного элемента используют содержащий бактериородопсин прозрачный клеевой слой, размещенный между объектом и дополнительной информационной идентифицирующей меткой, который освещают с использованием двух источников света с длинами волн, соответственно, в полосе поглощения основного и промежуточного состояний бактериородопсина, при этом в качестве эталонного используют значение световой энергии, принятой напросвет или на отражение от одного источника света с длиной волны в полосе поглощения основного или промежуточного состояния бактериородопсина, и регистрируют его изменение при последующем одновременном освещении со вторым источником света, имеющим длину волны, соответственно, в полосе поглощения промежуточного или основного состояния бактериородопсина.
При этом освещение светочувствительного элемента осуществляют источником света с максимумом излучения на длине волны вблизи 570 нм для полосы поглощения основного состояния бактериородопсина БР570 и источником света с максимумом излучения на длине волны вблизи 410 нм для полосы поглощения промежуточного состояния бактериородопсина М412 при плотности мощности излучения 0,1÷2,0 мВт/см2.
Введение бактериородопсина - светочувствительного белка галобактерий Halobacterium salenarum, в клеточные мембраны (пурпурные мембраны) которых он встроен (М.В.ГУСЕВ, Л.А.МИНЕЕВА, МИКРОБИОЛОГИЯ, ИЗДАТЕЛЬСТВО МОСКОВСКОГО УНИВЕРСИТЕТА, 1992, глава 18), в состав клеевой массы клеевого слоя, посредством которого информационная идентифицирующая метка в виде голограммы, фирменной этикетки или подобной наклейки прикрепляется к защищаемому объекту, обеспечивает при технологической простоте второй дополнительный уровень защиты, поскольку фотохромные свойства бактериородопсина обусловливают изменение значения пропускания клеевого слоя при его освещении с использованием двух источников света с длинами волн, соответственно, в полосе поглощения основного и промежуточного состояний бактериородопсина. При этом надежность контроля подлинности объекта достигается простыми техническими средствами благодаря использованию в качестве эталонного значения - значение световой энергии, принятой напросвет или на отражение от одного источника света с длиной волны в полосе поглощения основного или промежуточного состояния бактериородопсина, и регистрации изменения значения световой энергии, принятой напросвет или на отражение при последующем одновременном освещении со вторым источником света, имеющим длину волны, соответственно, в полосе поглощения промежуточного или основного состояния бактериородопсина, что не требует предварительного тарирования - определения фотохромных параметров контролируемого светочувствительного элемента и не зависит от их возможного изменения.
На Фиг.1 и 2 представлена схема контроля подлинности объекта с приемом световой энергии на просвет; на Фиг.3 и 4 - схема контроля подлинности объекта с приемом световой энергии на отражение.
Схема контроля включает защищаемый объект 1, информационную идентифицирующую метку 2, которая прикреплена к поверхности объекта 1 посредством прозрачного клеевого слоя 3, содержащего бактериородопсин штамма ЕТ1001, источник 4 света с длиной волны в полосе поглощения основного БР570 состояния бактериородопсина (светодиод с максимумом излучения на длине волны вблизи λ1=570 нм), источник света 5 с длиной волны в полосе поглощения промежуточного М412 состояния (светодиод с максимумом излучения на длине волны вблизи λ2=410 нм), фотоприемник 6 с регистратором 7. При этом информационная идентифицирующая метка 2 выполнена прозрачной, а соответствующий участок 8 поверхности защищаемого объекта 1 выполнен прозрачным (Фиг.1, 2) или с зеркально отражающим покрытием 9 (Фиг.3, 4). Возможно выполнение информационной идентифицирующей метки 2 с прозрачным участком 10 или со сквозным окном-отверстием 11 (Фиг.2, Фиг.3). Как вариант, в случае выполнения информационной идентифицирующей метки 2 из непрозрачного материала на ее поверхность, обращенную к клеевому слою 3, наносят зеркально отражающее покрытие, аналогичное покрытию 9, а соответствующий участок поверхности защищаемого объекта 1 выполняют прозрачным или в виде сквозного окна-отверстия (не показано).
Заявленный способ реализуется следующим образом.
На поверхность прозрачного участка 8 защищаемого объекта 1 (возможно выполнение этого участка в виде сквозного окна-отверстия) или на зеркально отражающее покрытие 9 посредством прозрачного клеевого слоя 3, в клеевую массу которого введен бактериородопсин в соотношении 10:1÷100:1, наносят прозрачную информационную идентифицирующую метку 2, например, в виде голограммы, фирменной этикетки или подобной наклейки с оптическим эффектом, обеспечивающую первый низкий уровень защиты, контролируемый невооруженным глазом. При этом в качестве клея для клеевой массы клеевого слоя 3 могут быть использованы любые водорастворимые клеи, например органические, такие как казеиновый, декстриновый, гуммиарабиковый, клеи на основе поливинилового спирта, клеи силикатные, а также другие клеи, не содержащие вредных для бактериородопсина растворителей или добавок (например, использующие в качестве растворителей предельные углеводороды: гексан, гептан и др.), в составе которых бактериородопсин полностью сохраняет все свои фотохромные свойства, заметно меняя значение пропускания клеевого слоя 3 в полосе поглощения при освещении видимым светом. Второй высокий уровень защиты, обусловленный наличием бактериородопсина в составе клеевого слоя, контролируют с использованием двух источников света 4 и 5 с длинами волн, соответственно, в полосе поглощения основного и промежуточного состояний бактериородопсина (λ1=570 нм и λ2=410 нм) по изменению значения пропускания клеевого слоя 3.
Пример 1.
Прозрачный участок 8 защищаемого объекта 1 (Фиг.1) с клеевым слоем 3, содержащим бактериородопсин, и прозрачную информационную идентифицирующую метку 2 освещают напросвет посредством источника 4 света (светодиод с длиной волны λ1=570 нм) в полосе поглощения основного БР570 состояния бактериородопсина. Прошедший через клеевой слой 3 поток световой энергии поступает на фотоприемник 6, сигнал от которого усиливается и регистрируется регистратором 7 в качестве эталонного. Затем производят освещение одновременно двумя источниками света: источником 4 света напросвет при дополнительной подсветке источником 5 света (светодиод с длиной волны λ2=410 нм) в полосе поглощения промежуточного М412 состояния бактериородопсина регистрируют регистратором 7 сигнал от фотоприемника 6 и сравнивают полученное значение с эталонным, ранее зарегистрированным. При плотности мощности излучения 0,1÷2,0 мВт/см2 изменение - уменьшение пропускания клеевого слоя 3 (относительная разность между первым и вторым зарегистрированными значениями световой энергии) составляет 5÷8%, что позволяет просто, надежно и однозначно определить подлинность объекта 1 и отличить его от подделки.
Пример 2.
Прозрачный участок 8 защищаемого объекта 1 (Фиг.2) с клеевым слоем 3, содержащим бактериородопсин, и прозрачный участок 10 информационной идентифицирующей метки 2 освещают напросвет посредством источника 5 света (светодиод с длиной волны λ2=412 нм) в полосе поглощения промежуточного М412 состояния бактериородопсина. Прошедший через клеевой слой 3 поток световой энергии поступает на фотоприемник 6, сигнал от которого усиливается и регистрируется регистратором 7 в качестве эталонного. Затем производят освещение одновременно двумя источниками света: источником 5 света напросвет при дополнительной подсветке источником 4 света (светодиод с длиной волны λ1=570 нм) в полосе поглощения основного БР570 состояния бактериородопсина, регистрируют регистратором 7 сигнал от фотоприемника 6 и сравнивают полученное значение с эталонным, ранее зарегистрированным. При плотности мощности излучения 0,1÷2,0 мВт/см2 изменение - уменьшение пропускания клеевого слоя 3 (относительная разность между первым и вторым зарегистрированными значениями световой энергии) составляет 5÷8%, что позволяет просто, надежно и однозначно определить подлинность объекта 1 и отличить его от подделки.
Пример 3.
Участок защищаемого объекта 1 с зеркально отражающим покрытием 9 (Фиг.3) и клеевым слоем 3, содержащим бактериородопсин, через сквозное окно-отверстие 11 информационной идентифицирующей метки 2 освещают в режиме косого падения посредством источника 4 света (светодиод с длиной волны λ1=570 нм) в полосе поглощения основного БР570 состояния бактериородопсина. Прошедший через клеевой слой 3 и отраженный зеркально отражающим покрытием 9 поток световой энергии поступает на фотоприемник 6, сигнал от которого усиливается и регистрируется регистратором 7 в качестве эталонного. Затем производят освещение одновременно двумя источниками света: источником 4 света в режиме косого падения при дополнительной подсветке источником 5 света (светодиод с длиной волны λ2=410 нм) в полосе поглощения промежуточного М412 состояния бактериородопсина, регистрируют регистратором 7 сигнал от фотоприемника 6 и сравнивают полученное значение с эталонным, ранее зарегистрированным. При плотности мощности излучения 0,1÷2,0 мВт/см2 изменение - уменьшение пропускания клеевого слоя 3 (относительная разность между первым и вторым зарегистрированными значениями световой энергии) составляет 4÷7%, что позволяет просто, надежно и однозначно определить подлинность объекта 1 и отличить его от подделки.
Пример 4.
Участок защищаемого объекта 1 с зеркально отражающим покрытием 9 (Фиг.4) и клеевым слоем 3, содержащим бактериородопсин, и прозрачную информационную идентифицирующую метку 2 освещают в режиме косого падения посредством источника 5 света (светодиод с длиной волны λ2=410 нм) в полосе поглощения промежуточного М412 состояния бактериородопсина. Прошедший через клеевой слой 3 и отраженный зеркально отражающим покрытием 9 поток световой энергии поступает на фотоприемник 6, сигнал от которого усиливается и регистрируется регистратором 7 в качестве эталонного. Затем производят освещение одновременно двумя источниками света: источником 4 света в режиме косого падения при дополнительной подсветке источником 5 света (светодиод с длиной волны λ1=570 нм) в полосе поглощения основного БР570 состояния бактериородопсина, регистрируют регистратором 7 сигнал от фотоприемника 6 и сравнивают полученное значение с эталонным, ранее зарегистрированным. При плотности мощности излучения 0,1÷2,0 мВт/см2 изменение - уменьшение пропускания клеевого слоя 3 (относительная разность между первым и вторым зарегистрированными значениями световой энергии) составляет 4÷7%, что позволяет просто, надежно и однозначно определить подлинность объекта 1 и отличить его от подделки.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ МАРКИРОВКИ И КОНТРОЛЯ ПОДЛИННОСТИ ПРИ ЗАЩИТЕ ОБЪЕКТА ОТ ПОДДЕЛКИ | 2006 |
|
RU2323097C1 |
СПОСОБ МАРКИРОВКИ И КОНТРОЛЯ ПОДЛИННОСТИ ПРИ ЗАЩИТЕ ОБЪЕКТА ОТ ПОДДЕЛКИ | 2008 |
|
RU2411135C2 |
Светочувствительная защитная метка для визуальной идентификации | 2018 |
|
RU2679536C1 |
Светочувствительная защитная метка для аппаратной идентификации | 2018 |
|
RU2679535C1 |
НАНОКОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2007 |
|
RU2332352C1 |
Способ маркировки объекта при защите от подделки и фотохромные чернила | 2017 |
|
RU2662813C1 |
СПОСОБ ПОЛУЧЕНИЯ МОЛЕКУЛЯРНОГО ВОДОРОДА | 2005 |
|
RU2283899C1 |
ИДЕНТИФИКАЦИОННАЯ МАРКА | 2014 |
|
RU2572368C1 |
СПОСОБ ИНДИКАЦИИ УРОВНЯ ОСВЕЩЕННОСТИ | 2006 |
|
RU2316739C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЕКАРСТВЕННОГО СРЕДСТВА | 2008 |
|
RU2395268C2 |
Изобретение относится к способам идентификации объектов. Способ защиты объекта от подделки включает нанесение информационной идентифицирующей метки к поверхности защищаемого объекта посредством клеевого слоя, в состав которого введен светочувствительный белок бактериородопсин. Иинформационную идентифицирующую метку или ее часть выполняют прозрачной, а соответствующий участок поверхности защищаемого объекта выполняют прозрачным или с зеркально отражающим покрытием. При контроле подлинности объекта освещают светочувствительный элемент, содержащий бактериородопсин, с использованием двух источников света с длинами волн, соответственно, в полосе поглощения основного и промежуточного состояний бактериородопсина. Изобретение позволяет повысить надежность защиты от подделки и контроль подлинности ценных документов и изделий. 2 н. и 1 з.п. ф-лы, 4 ил.
СПОСОБ ЗАЩИТЫ ЦЕННЫХ БУМАГ ПУТЕМ НАНЕСЕНИЯ ГОЛОГРАФИЧЕСКИХ МЕТОК | 1992 |
|
RU2035315C1 |
СПОСОБ КОНТРОЛЯ ПОДЛИННОСТИ ЦЕННОЙ БУМАГИ | 1997 |
|
RU2123722C1 |
СПОСОБ ФОТОХРОМНОЙ МАРКИРОВКИ И/ИЛИ ОБЕСПЕЧЕНИЯ АУТЕНТИЧНОСТИ ПРЕДМЕТОВ И КОМПОЗИЦИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2240923C2 |
ЦЕННЫЙ ДОКУМЕНТ С ЭЛЕМЕНТАМИ ЗАЩИТЫ | 1994 |
|
RU2111864C1 |
DE 19514247 A1, 17.10.1996. |
Авторы
Даты
2008-07-20—Публикация
2006-08-17—Подача