Изобретение относится к области судостроения и касается вопроса создания движительных, винторулевых и подруливающих комплексов и может быть использовано на судах различного типа и назначения.
Известен винторулевой комплекс в виде винторулевой угловой колонки типа "Аквамастер" (прототип), у которого крутящий момент от приводного двигателя, например дизеля или электродвигателя, расположенного выше ватерлинии (обычно в кормовой оконечности судна), передается на гребной вал, расположенный ниже ватерлинии, с помощью углового редуктора (УР) (см. рекл. проспект фирмы Aquamaster - Rauma Ltd., 2005 г.).
УР размещен в герметичном корпусе (гондоле), заполненном смазочным маслом. Выходной вал УР проходит через дейдвудное устройство (сальник) и соединен через муфту и главный упорный подшипник с гребным винтом.
Недостатками такого устройства являются:
- наличие дейдвудного устройства, которое не может полностью исключить попадание воды в редуктор, что снижает надежность всего устройства, так как редуктор не может работать на обводненном масле;
- наличие угловой редукторной передачи, которая приводит к увеличению уровня шума и вибрации (структурной и подводной компонент);
- большой диаметр гондолы, в которой располагается нижний угловой редуктор и главный упорный подшипник, по сравнению с диаметром гребного винта, что снижает пропульсивный коэффициент полезного действия движителя.
Последний недостаток связан с тем, что высокая мощность, передаваемая угловой передачей на гребной винт, требует применения шестерен большого диаметра. В то же время пропульсивный коэффициент полезного действия (КПД) зависит от отношения диаметра гондолы к диаметру гребного винта - Кд. Чем меньше Кд, тем выше КПД. В настоящее время в винторулевых комплексах с угловыми редукторами (а также в варианте со встроенными в гондолу гребными электродвигателями) значение Кд лежит в пределах 0,5-0,6.
Задачей предлагаемого изобретения является устранение указанных недостатков известного устройства.
Это достигается тем, что в состав винторулевого комплекса судна, содержащего приводной двигатель, расположенный выше ватерлинии судна и связанный через механическую передачу с размещенным на подшипниках в гондоле ниже ватерлинии судна валом, который соединен с гребным валом с установленным на нем гребным винтом, введен верхний вал, расположенный параллельно нижнему валу и соединенный с выходным валом приводного двигателя. При этом верхний и нижний валы выполнены в виде коленчатых валов, связанных друг с другом через размещенную между ними механическую передачу в виде шатунного механизма, оснащенного шатунными подшипниками. Причем шатунные и коренные подшипники нижнего коленчатого вала выполнены в виде работающих на водяной смазке подшипников скольжения, а гондола выполнена с возможностью сообщения ее полости с забортной водой.
При этом шатунный механизм с целью сужения средней части пилона, на котором крепится гондола, и таким образом уменьшения лобового сопротивления пилона может быть выполнен в виде крейцкопфного механизма. Кроме того, шатунные и коренные подшипники скольжения нижнего коленчатого вала оснащены вкладышами, выполненными на основе металлокерамики или углепластиков.
Кроме того, гондола вместе с пилоном может быть выполнена с возможностью поворота вокруг вертикальной оси для реализации функции управления направлением движения судна.
Введение двух параллельно расположенных коленчатых валов, передающих момент первичного двигателя на гребной винт, вызвано способностью кривошипно-шатунного механизма работать в водной среде в отличие от прототипа, у которого угловая зубчатая передача может работать только при заполнении маслом редуктора, что требовало применения сложного и ненадежного дейдвудного устройства. Замена дейдвудного устройства на обычный подшипник скольжения и заполнение гондолы забортной водой повышает надежность работы винторулевого комплекса. Радиус кривошипов может быть в несколько раз меньшим, чем радиус шестерен, используемых в прототипе, что позволяет уменьшить диаметр гондолы.
Коэффициент полезного действия гребного винта существенно зависит от диаметра гондолы, но практически (в известных пределах) не зависит от ее длины. Это обстоятельство позволяет наращивать передаваемую на гребной винт мощность, увеличивая число кривошипов на валах, то есть длину коленчатых валов, сохраняя малый радиус кривошипа, а значит, и гондолы в целом.
Характер взаимодействия элементов кривошипно-шатунного механизма отличается от кинематики зубчатой передачи. И в коренных, и в мотылевых шейках используются подшипники скольжения, которые надежно работают в воде при использовании современных металлокерамических или углепластиковых материалов.
Выполнение связи между коленчатыми валами с помощью крейцкопфного механизма позволяет снизить площадь поперечного сечения пилона, на котором укреплена гондола, и таким образом снизить лобовое сопротивление подводной части винторулевого комплекса судна.
Устройство предлагаемого винторулевого комплекса судна поясняется чертежом, где на фиг.1 схематически представлен общий вид винторулевого комплекса, а на фиг.2 - вид сбоку устройства на фиг.1.
Устройство включает в себя приводной двигатель 1, в качестве которого могут быть использованы любые первичные двигатели, применяемые в судостроении (дизель, дизель-редукторный агрегат, газо или турборедукторный агрегат, гребной электродвигатель), с выходным валом 2 которого соединен верхний коленчатый вал 3, связанный через шатуны 4 и ползуны крейцкопфного механизма 5 с нижним коленчатым валом 6, размещенном в гондоле 7, причем один из концов нижнего коленчатого вала через главный упорный подшипник 8 соединен с гребным винтом 9. Нижний коленчатый вал 6 имеет коренные подшипники 10 и шатунные подшипники 11. Винторулевой комплекс крепится к корпусу судна 12 и располагается ниже ватерлинии.
Устройство работает следующим образом.
Приводной двигатель 1 вращает верхний коленчатый вал 3. Момент вращения через систему шатунов 4 и ползуны крейцкопфного механизма 5 передается нижнему коленчатому валу 6, расположенному ниже ватерлинии судна и работающему в гондоле 7, заполненной забортной водой. Нижние коренные 10 и шатунные подшипники 11 работают в воде. Несущая способность воды как смазки подшипников скольжения ниже, чем у смазочного масла. Однако вкладыши подшипников на основе металлокерамики или углепластиков, например, типа "ФУТ" в паре с материалом "Анита-10" успешно применяются в современных дейдвудных устройствах гребных валов, а также в подшипниковых узлах погружных насосов, роторных механизмах гидроэлектростанций и имеют большой ресурс.
Расчеты показывают, что отношение диаметра гондолы к диаметру гребного винта с применением кривошипно-шатунной передачи может быть снижено до значений Кд<0,25. Это обстоятельство приводит к существенному повышению КПД винта по сравнению с прототипом.
Использование современных материалов для подшипников скольжения кривошипно-шатунного механизма позволяет обеспечить его надежную работу не в масляной среде, а в воде. Таким образом, устраняется недостаток прототипа винторулевого комплекса, а дейдвудное устройство можно исключить из его состава.
Наличие кривошипно-шатунной передачи в предлагаемом винторулевом комплексе судна позволяет избавиться от повышенной виброактивности, присущей прототипу, поскольку кривошипно-шатунные механизмы в диапазоне частот вращений гребных винтов работают практически бесшумно, что позволяет говорить об устранении такого недостатка, присущего зубчатым передачам.
название | год | авторы | номер документа |
---|---|---|---|
ВИНТОРУЛЕВАЯ КОЛОНКА | 2018 |
|
RU2681411C1 |
УНИВЕРСАЛЬНОЕ ПОЛУПОГРУЖНОЕ КРУПНОТОННАЖНОЕ ТРАНСПОРТНОЕ СУДНО ДЛЯ ПЛАВАНИЯ В МОРЯХ С ЛЕДОВЫМ ПОКРОВОМ И НА ЧИСТОЙ ВОДЕ | 2015 |
|
RU2585199C1 |
Винторулевая колонка | 2019 |
|
RU2731811C1 |
СУДОВАЯ ДВИЖИТЕЛЬНАЯ УСТАНОВКА | 2022 |
|
RU2785390C1 |
ДВИЖИТЕЛЬНАЯ УСТАНОВКА СУДНА | 2015 |
|
RU2598697C1 |
МОТОРНОЕ СУДНО В.С.ГРИГОРЧУКА | 1997 |
|
RU2112695C1 |
ЭЛЕКТРИЧЕСКАЯ ДВИЖИТЕЛЬНО-РУЛЕВАЯ КОЛОНКА | 2020 |
|
RU2748813C1 |
УСТАНОВКА ДЛЯ ИСПЫТАНИЙ МОДЕЛЕЙ СУДОВЫХ ДВИЖИТЕЛЕЙ | 2001 |
|
RU2216476C2 |
ПРОПУЛЬСИВНЫЙ КОМПЛЕКС ТОРПЕДЫ, СПОСОБ РАБОТЫ И ВАРИАНТЫ ДВИЖИТЕЛЯ | 2020 |
|
RU2757339C1 |
ЧАСТИЧНО ПОГРУЖЁННЫЙ ВИНТОРУЛЕВОЙ ПРИВОД А.Г. ДАВЫДОВА (ВАРИАНТЫ), УЗЕЛ КРЕПЛЕНИЯ ГИДРОЦИЛИНДРА ПРИВОДА К ТРАНЦУ СУДНА И ГИДРОЦИЛИНДР | 2010 |
|
RU2537503C2 |
Изобретение относится к области судостроения и касается вопроса создания движительных, винторулевых и подруливающих комплексов. Винторулевой комплекс судна содержит приводной двигатель, расположенный выше ватерлинии судна и связанный через механическую передачу с размещенным на подшипниках в гондоле ниже ватерлинии судна валом, который через главный упорный подшипник соединен с гребным валом с установленным на нем гребным винтом. В состав комплекса введен верхний вал, расположенный параллельно нижнему валу и соединенный с выходным валом приводного двигателя. Верхний и нижний валы выполнены в виде коленчатых валов, связанных друг с другом через размещенную между ними механическую передачу в виде шатунного механизма, оснащенного шатунными подшипниками. Шатунные и коренные подшипники нижнего коленчатого вала выполнены в виде работающих на водной смазке подшипников скольжения. Гондола выполнена с возможностью сообщения ее полости с забортной водой. Достигается повышение надежности и коэффициента полезного действия винторулевых колонок. 3 з.п. ф-лы, 2 ил.
Рабочий орган плужного снегоочистителя | 1986 |
|
SU1310472A1 |
US 4932907 A, 12.06.1990 | |||
ПОВОРОТНО-ОТКИДНАЯ КОЛОНКА | 2002 |
|
RU2219101C1 |
Авторы
Даты
2008-08-10—Публикация
2006-11-30—Подача