ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ Российский патент 2008 года по МПК H01L35/28 

Описание патента на изобретение RU2338300C1

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ).

Прототипом изобретения является ТЭБ, описанная в [1]. ТЭБ состоит из последовательно соединенных в электрическую цепь полупроводниковых термоэлементов, каждый из которых образован двумя ветвями (столбиками, выполненными либо цилиндрическими, либо в виде прямоугольного параллелепипеда), изготовленными из полупроводника соответственно р- и n-типа. Ветви термоэлементов соединяются между собой посредством коммутационных пластин, причем ветви р-типа и n-типа контактируют торцевыми поверхностями соответственно с двумя противоположными поверхностями коммутационной пластины. Коммутационные пластины имеют несколько большую площадь, чем площадь поперечного сечения ветвей, вследствие чего они выступают за поверхность структуры, образованной ветвями ТЭБ, причем нечетные коммутационные пластины выступают за одну поверхность структуры, а четные коммутационные пластины - за другую. Соответственно отвод и подвод теплоты осуществляется с выступающих частей коммутационных пластин за счет воздушного или жидкостного теплообмена.

Недостатком известной конструкции является отвод (подвод) теплоты только с поверхности выступающих частей коммутационных пластин, тогда как вследствие теплопроводности имеет место также нагрев (охлаждение) близлежащих к ним областей ветвей термоэлементов.

Целью изобретения является повышение эффективности отвода (подвода) теплоты с горячих (холодных) контактов ТЭБ за счет отвода (подвода) теплоты также и с близлежащих к ним областей ветвей термоэлементов.

Цель достигается тем, что поверхность структуры, образованной ветвями ТЭБ, за исключением областей близлежащих к выступающим частям коммутационных пластин, покрыта слоем теплоизоляционного диэлектрического материала. Площадь, не покрытая слоем теплоизоляционного диэлектрического материала, определяется произведением толщины ветви термоэлемента на 1/4 ее высоты. При этом съем теплоты с горячих и холодных коммутационных пластин, а также с близлежащих к ним областей осуществляется за счет принудительного жидкостного охлаждения посредством жидкостных теплообменников.

Конструкция термоэлектрической батареи приведена на фиг.1 и 2. ТЭБ состоит из последовательно соединенных в электрическую цепь посредством коммутационных пластин 1 и 2 чередующихся ветвей, изготовленных соответственно из полупроводника р-типа 3 и n-типа 4. Электрическое соединение ветвей осуществляют посредством контакта ветвь р-типа 3 - коммутационная пластина 1 или 2 - ветвь n-типа 4, где ветвь р-типа 3 контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа 4 - с другой. Каждая ветвь в ТЭБ контактирует противоположными торцевыми поверхностями с двумя коммутационными пластинами 1 и 2. Коммутационные пластины 1 и 2 имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа 3 и 4, вследствие чего их концы выступают за поверхность структуры, образованной ветвями ТЭБ. Концы нечетных коммутационных пластин 1 выступают за одну поверхность структуры, а концы четных коммутационных пластин 2 - за другую.

Поверхность структуры, образованной ветвями ТЭБ, за исключением областей близлежащих к выступающим частям коммутационных пластин 1 и 2, покрыта слоем теплоизоляционного диэлектрического материала 5. Площадь, не покрытая слоем теплоизоляционного диэлектрического материала 5, определяется произведением толщины ветви термоэлемента на % ее высоты. Съем теплоты с горячих и холодных коммутационных пластин, а также с близлежащих к ним областей осуществляется за счет принудительного жидкостного охлаждения посредством жидкостных теплообменников 6.

ТЭБ функционирует следующим образом.

При прохождении через ТЭБ постоянного электрического тока, подаваемого от источника электрической энергии, между коммутационными пластинами 1 и 2, представляющими собой контакты ветвей р- и n-типа 3 и 4, возникает разность температур, обусловленная выделением и поглощением теплоты Пельтье. При указанной на фиг.1 полярности электрического тока происходит нагрев нечетных коммутационных пластин 1 и охлаждение четных 2. Отвод теплоты от горячих и холодных коммутационных пластин 1 и 2 осуществляется за счет принудительного жидкостного охлаждения при использовании жидкостных теплообменников 6. Повышение эффективности отвода теплоты с горячих и холодных контактов ТЭБ осуществляется за счет ее съема также и с близлежащих к коммутационным пластинам областей поверхности структуры, образованной ветвями ТЭБ. При этом теплоизоляция 5 служит для уменьшения теплопритока из окружающей среды.

Литература

1. Поздняков Б.С., Коптелов Е.А. Термоэлектрическая энергетика. М., Атомиздат, 1974.

Похожие патенты RU2338300C1

название год авторы номер документа
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2007
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2338298C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2007
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2338299C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2357327C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2013
  • Исмаилов Тагир Абдурашидович
  • Евдулов Денис Викторович
  • Миспахов Играмидин Шарафидинович
RU2534426C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Магомедов Мурад Рабаданович
  • Евдулов Денис Викторович
RU2376683C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Магомедов Мурад Рабаданович
  • Евдулов Денис Викторович
RU2376682C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Агаев Магомед Улубиевич
  • Евдулов Денис Викторович
RU2379791C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Хазамова Мадина Абдулаевна
  • Исабекова Тамила Иллахидиновна
RU2379792C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Евдулов Денис Викторович
RU2379790C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Хазамова Мадина Абдулаевна
  • Рагимова Тамила Арслановна
RU2379793C1

Иллюстрации к изобретению RU 2 338 300 C1

Реферат патента 2008 года ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ). Технический результат: повышение эффективности отвода (подвода) теплоты с горячих (холодных) контактов ТЭБ за счет отвода (подвода) теплоты также и с близлежащих к ним областей ветвей термоэлементов. Сущность: поверхность структуры, образованной ветвями ТЭБ, за исключением областей близлежащих к выступающим частям коммутационных пластин, покрыта слоем теплоизоляционного диэлектрического материала. Площадь, не покрытая слоем теплоизоляционного диэлектрического материала, определяется произведением толщины ветви термоэлемента на 1/4 ее высоты. При этом съем теплоты с горячих и холодных коммутационных пластин, а также с близлежащих к ним областей осуществляется за счет принудительного жидкостного охлаждения посредством жидкостных теплообменников. 2 ил.

Формула изобретения RU 2 338 300 C1

Термоэлектрическая батарея, состоящая из последовательно соединенных в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, причем ветви р-типа и n-типа контактируют торцевыми поверхностями соответственно с двумя противоположными поверхностями коммутационной пластины, коммутационные пластины имеют несколько большую площадь, чем площадь поперечного сечения ветвей, вследствие чего они выступают за поверхность структуры, образованной ветвями термоэлектрической батареи, отличающаяся тем, что поверхность структуры, образованной ветвями ТЭБ, за исключением областей, близлежащих к выступающим частям коммутационных пластин, покрыта слоем теплоизоляционного диэлектрического материала, а площадь, не покрытая слоем теплоизоляционного диэлектрического материала, определяется произведением толщины ветви термоэлемента на 1/4 ее высоты, при этом съем теплоты с горячих и холодных коммутационных пластин, а также с близлежащих к ним областей осуществляется за счет принудительного жидкостного охлаждения посредством жидкостных теплообменников.

Документы, цитированные в отчете о поиске Патент 2008 года RU2338300C1

ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2003
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
  • Меркухин Николай Евгеньевич
RU2269184C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282277C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282278C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282274C2
US 5038569 A, 13.08.1991.

RU 2 338 300 C1

Авторы

Исмаилов Тагир Абдурашидович

Вердиев Микаил Гаджимагомедович

Евдулов Олег Викторович

Даты

2008-11-10Публикация

2007-06-18Подача