Изобретение относится к конструкциям регулярных насадок, которые применяются в процессах ректификации, абсорбции, очистки и осушки природного газа, а также в качестве смесителей жидких и газовых потоков в качестве оросителей градирен систем оборотного водоснабжения, и может найти применение практически во всех технологических процессах нефтяной, газовой, химической и других смежных отраслей промышленности.
Известна регулярная структурированная насадка фирмы «Зульцер» (патент США №4643853, НКИ: 261-112 от 17.02.87), которая выполнена из вертикально установленных гофрированных листов, соприкасающихся выступающими гофрами друг с другом. Гофры на каждом из листов расположены по диагонали и выполнены с отверстиями или насечками вдоль или поперек гофр.
Известна также регулярная структурированная насадка для тепло- и массообменных аппаратов (патент РФ №2188706, МПК 7 В01J 19/32, В01F 3/04 от 10.09.02), состоящая из собранных в пакеты гофрированных листов, установленных вертикально и параллельно с наклоном гофр соседних листов под углом к горизонту в противоположные стороны, соприкасающихся выступающими гофрами друг с другом и образующих между собой свободные каналы сложной геометрической формы.
Недостатком таких насадок является то, что они обеспечивают удовлетворительное распределение газовых и жидкостных потоков лишь в пределах замкнутых плоских каналов, образованных параллельными стенками соседних гофрированных пластин. При этом поперечное перемешивание в объеме всей насадки в целом не обеспечивается, что заметно снижает эффективность процессов тепло- и массообмена.
Наиболее близкой к предлагаемому изобретению является регулярная структурированная насадка для тепло- и массообменных аппаратов, содержащая блок размещенных ярусами горизонтальных рядов многозаходных винтовых элементов, расположенных в каждом ряду с постоянным зазором друг относительно друга (Авторское Свидетельство SU №1760304 A1, F28F 25/08 от 10.05.1990).
К недостаткам этой конструкции следует отнести то, что большая часть потока газа проходит байпасом вертикально по сквозным каналам насадки, поэтому не достигается существенное повышение эффективности тепло- и массообмена в процессах разделения смесей. К недостаткам данной конструкции насадки относится недостаточная турбулизация газовой фазы, а также отсутствие свойств изотропности, что отрицательно сказывается на равномерности распределения газожидкостных потоков во всем объеме насадки. Механическая прочность блока насадки также является недостаточной, что сужает область применения в градирнях систем оборотного водоснабжения.
Задача изобретения - повышение эффективности процессов тепло- и массообмена за счет образования квазиизотропной структуры в объеме блока насадки, предотвращение байпаса непрореагировавшего газа, повышение интенсификации массообмена за счет турбулизации потоков внутри всего объема насадки, а также увеличение механической прочности блока насадки.
Поставленная задача достигается тем, что в регулярной структурированной насадке для тепло- и массообменных аппаратов, содержащей блок размещенных ярусами горизонтальных рядов многозаходных винтовых элементов, расположенных в каждом ряду с постоянным зазором относительно друг друга, согласно изобретению в зазоры между соседними винтовыми элементами в горизонтальных рядах вставлены вертикальные винтовые элементы, а величина зазора между всеми горизонтально расположенными винтовыми элементами равна наружному диаметру вставленных вертикальных винтовых элементов.
Величина наружного диаметра вставленных вертикальных винтовых элементов находится в соотношении 0,32-0,98 к величине наружного диаметра горизонтальных элементов, а зазор между последними также находится в этих пределах.
На фиг.1 изображен в изометрии фрагмент блока регулярной структурированной насадки, образованный тремя взаимно перпендикулярными рядами четырехзаходных винтовых элементов 1, 2 и 3, скрепленных между собой полимерной лентой 4 методом точечной сварки по торцам винтов 5. Сами винтовые элементы 1, 2 и 3 изготовляют методом экструзии из полимерного материала, например полиэтилена низкой плотности, высокого давления. Винтовые элементы на фиг.1 условно показаны в виде цилиндров.
На фиг.2 показан четырехзаходный винтовой элемент 1, 2 или 3, располагаемый в блоке насадки соответственно в горизонтальной либо в вертикальной плоскости в соответствии с компоновкой блока, представленной на фиг.1.
На фиг.3 представлена в виде кривой 6 зависимость потери напора ΔР/Н от скорости газового потока Wo в расчете на полное сечение пустого аппарата.
Регулярная структурированная насадка для тепло- и массообменных аппаратов выполнена в виде блока размещенных ярусами горизонтальных рядов многозаходных винтовых элементов 1 и 2, расположенных в каждом ряду с постоянным зазором относительно друг друга, причем в зазоры между соседними винтовыми элементами 1 и 2 в горизонтальных рядах вставлены вертикальные винтовые элементы 3, а величина зазора между всеми горизонтально расположенными винтовыми элементами 1 и 2 равна наружному диаметру вставленных вертикальных винтовых элементов. При этом совокупность всех винтовых элементов 1, 2 и 3 регулярной насадки образует во всем объеме блока насадки трехмерную квазиизотропную структуру. Каналы насадки имеют сложную геометрическую форму, способствующую интенсивному перемешиванию и турбулизации контактирующих потоков газа и жидкости.
Компоновка насадки выполнена так, что величина наружного диаметра вставленных вертикальных винтовых элементов 3 находится в соотношении 0,32-0,98 по отношению к величине наружного диаметра горизонтальных элементов 1 и 2, а зазор между последними также находится в этих пределах.
При этом выполнение наружного диаметра вставляемых вертикальных элементов в соотношении менее 0,32 по отношению к величине диаметра горизонтальных винтовых элементов приводит к неоправданному росту гидравлического сопротивления насадки. При увеличении величины диаметра вертикальных винтовых элементов к горизонтальным выше 0,98 приводит к существенному нарушению свойств изотропности блока насадки.
Регулярная структурированная насадка работает следующим образом. Жидкая фаза подается на верхнюю часть блока, собранного из винтовых элементов 1, 2 и 3, и стекает по их поверхности в виде тонкой пленки и капель, контактируя с восходящими по свободным каналам сложной геометрической формы, образованным взаиморасположением горизонтальных 1, 2 и вертикальных винтовых элементов 3 потоками газа, таким образом, массообмен между жидкостью и газом происходит в пленочно-капельном режиме. Расположение винтовых элементов в 3-х взаимно перпендикулярных плоскостях обеспечивает оптимальное - изотропное геометрическое строение структуры насадки и тем самым более полное использование всего рабочего объема насадки вследствие увеличенного пути прохождения жидкости и ее эффективного перераспределения во всем объеме блока насадки, увеличение турбулизации газовой и жидкой фаз и необходимую интенсификацию процессов тепло- и массообмена.
Выполнение блока насадки из элементов, представляющих собой тела вращения, которые выполнены в виде многозаходных винтов, способствует закручиванию жидкостного и газового потоков и, тем самым, турбулизации потоков. Минимальное число заходов многозаходного винта 2, а максимальное ограничено уменьшением площади свободных каналов для прохода газа в блоке и составляет 5 и объясняется условиями технологии изготовления.
Расположение элементов, представляющих собой многозаходные винты в блоке с горизонтальным и вертикальным зазором относительно друг друга, обусловлено необходимостью создания квазиизотропной структуры. Размер шага, на расстоянии которого соседние горизонтальные элементы располагаются друг от друга, должен быть в пределах от 0,32 до 0,98 диаметра вертикальных элементов, что обеспечивает оптимальные условия для формирования квазиизотропной структуры блока насадки, а также условия для интенсивного осуществления процессов тепло- и массообмена.
Предлагаемая регулярная структурированная насадка позволяет повысить эффективность тепло- и массообмена на 16-28% в процессах абсорбции, ректификации, очистки, осушки газов, охлаждении жидкостей и т.п., проста в изготовлении и может быть использована при реконструкции и замене известных регулярных насадок, собранных, например, из гофрированных листов, согласно изобретению путем монтажа блоков предлагаемой регулярной структурированной трехмерной насадки из винтовых элементов, позволяющих интенсифицировать процессы тепло- и массообмена за счет турбулизации газовых потоков, перераспределения потоков газа и жидкости, а также за счет организации квазиизотропной пространственной структуры. Механическая прочность блока насадки при этом возрастет.
название | год | авторы | номер документа |
---|---|---|---|
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО- И МАССООБМЕННЫХ АППАРАТОВ | 2005 |
|
RU2300419C1 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛОМАССООБМЕННЫХ АППАРАТОВ | 2007 |
|
RU2359749C2 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО- И МАССООБМЕННЫХ АППАРАТОВ | 2011 |
|
RU2480275C2 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО- И МАССООБМЕННЫХ АППАРАТОВ | 2010 |
|
RU2456070C2 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО- И МАССООБМЕННЫХ АППАРАТОВ | 2013 |
|
RU2533722C1 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО- И МАССООБМЕННЫХ АППАРАТОВ | 2013 |
|
RU2526389C1 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО- И МАССООБМЕННЫХ АППАРАТОВ | 2001 |
|
RU2192305C1 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО-МАССООБМЕННЫХ АППАРАТОВ | 2010 |
|
RU2480274C2 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО-МАССООБМЕННЫХ АППАРАТОВ | 2010 |
|
RU2457026C1 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО-МАССООБМЕННЫХ АППАРАТОВ | 2010 |
|
RU2480273C2 |
Изобретение относится к конструкциям регулярных структурированных насадок, которые применяются в процессах ректификации, абсорбции, очистки и осушки природного газа, а также в качестве смесителей жидких и газовых потоков, в качестве оросителей градирен систем оборотного водоснабжения, и может найти применение практически во всех технологических процессах нефтяной, газовой, химической и других смежных отраслей промышленности. Регулярная структурированная насадка для тепло- и массообменных аппаратов содержит блок размещенных ярусами горизонтальных рядов многозаходных винтовых элементов, расположенных в каждом ряду с постоянным зазором относительно друг друга. В зазоры между соседними винтовыми элементами в горизонтальных рядах вставлены вертикальные винтовые элементы, а величина зазора между всеми горизонтально расположенными винтовыми элементами равна наружному диаметру вставленных вертикальных винтовых элементов. Величина наружного диаметра вставленных вертикальных винтовых элементов находится в соотношении 0,32-0,98 к величине наружного диаметра горизонтальных винтовых элементов, а зазор между последними также находится в этих пределах. Изобретение позволяет повысить эффективность процессов тепло- и массообмена за счет образования квазиизотропной структуры во всем объеме блока насадки, турбулизации потоков внутри объема насадки, предотвратить байпасирование непрореагировавшего газа, а также увеличить механическую прочность блока насадки. 1 з.п. ф-лы, 3 ил.
Ороситель градирни | 1990 |
|
SU1760304A1 |
СПИРАЛЬНАЯ НАСАДКА ДЛЯ ТЕПЛОМАССООБМЕННЫХ И СОВМЕЩЕННЫХ С НИМИ РЕАКЦИОННЫХ ПРОЦЕССОВ | 2004 |
|
RU2289473C2 |
НАСАДКА ДЛЯ МАССООБМЕННЫХ АППАРАТОВ | 1992 |
|
RU2045333C1 |
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛОМАССООБМЕННЫХ КОЛОНН | 1993 |
|
RU2035992C1 |
Контактная насадка | 1985 |
|
SU1242219A2 |
Регулярная насадка для тепломассообменных аппаратов | 1984 |
|
SU1212522A1 |
US 6585237 В2, 01.07.2003. |
Авторы
Даты
2008-11-20—Публикация
2007-06-09—Подача