Предлагаемое техническое решение относится к энергетическому машиностроению и может быть использовано как при создании мощных парогазовых установок (ПТУ), так и для эффективного использования давления природного газа на газораспределительных станциях и газорегуляторных пунктах с получением свободной механической энергии, которую можно использовать, например, для независимого привода компрессора газотурбинной установки (ГТУ).
Известна газотурбодетандерная установка для работы на природном газе, включающая магистраль природного газа высокого давления с установленными в ней теплообменником и турбодетандером, соединенным валом с компрессором, снабженная регенеративной газотурбинной установкой, содержащей камеру сгорания, газовую турбину и теплообменник-регенератор, установленный на выходе газовой турбины, причем теплообменник установлен перед турбодетандером и сопряжен с теплообменником-регенератором, а газовая турбина механически соединена с валом, соединяющим турбодетандер с компрессором (патент РФ №2013615, опубл. 30.5.1994).
Известная газотурбодетандерная установка обладает следующими недостатками.
Во-первых, в представленной схеме используется стандартная газотурбинная установка, силовой вал которой кроме генератора дополнительно соединен с турбодетандером. Оптимальная степень сжатия ε одновальных ГТУ при существующем уровне температур (1200-1300°С) составляет порядка 15-20, что влечет за собой сильное увеличение габаритов воздушного компрессора и числа ступеней газовой турбины. Росту массогабаритных показателей установки также способствует то, что соединение единым валом турбодетандера, компрессора, силовой турбины и генератора предопределяет единую частоту вращения все указанных агрегатов, которая задается существующей частотой генератора (50 Гц). Предлагаемый вариант перехода на более высокую частоту вращения требует установки редуктора. В этом случае уменьшение массы и габаритов турбокомпрессорной группы компенсируется введением редуктора. Кроме того, редуктор существенно ограничивает и мощность всей установки.
Во-вторых, полезная мощность собственно газовой турбины не превышает 50% от ее общей мощности, т.к. половина вырабатываемой мощности тратится на привод компрессора. Это обстоятельство также ведет к увеличению массогабаритных показателей газовой турбины.
В-третьих, использование газовых турбин с высокотемпературными камерами сгорания на газораздаточных станциях в предлагаемом варианте резко снижает безопасность работы таких станций, т.к. при наличии утечки природного газа из турбодетандера при его контакте с камерой сгорания ГТУ возрастает вероятность возгорания и взрыва газа.
Технической задачей, решаемой предлагаемым техническим решением, является создание компактной автономной ГТУ с турбодетандерной установкой на линии природного газа, позволяющей использовать энергию сжатого природного газа для выработки электроэнергии с удельным расходом топлива на уровне 150-160 г/кВт против 300-350 г/кВт на обычных ТЭС, обладающей высокой степенью безопасности при увеличенной по сравнению с обычными ГТУ надежностью.
Поставленная задача решается тем, что в газотурбинной установке, содержащей компрессор, выход из которого подключен к входу камеры сгорания, а выход камеры сгорания соединен с входом силовой газовой турбины, кинематически соединенной только с электрогенератором, теплообменный аппарат соединен входом с высоконапорной магистралью природного газа, а его выход соединен с линией подвода природного газа к турбодетандеру, причем греющей средой в теплообменном аппарате являются горячие газы, выходящие из силовой газовой турбины, компрессор выполнен высокооборотным с независимым от силовой газовой турбины турбодетандерным приводом, а степень сжатия воздуха в высокооборотном компрессоре ε определяется из следующего соотношения:
где ε - степень сжатия воздуха в компрессоре,
ΔТ - нагрев природного газа в теплообменном аппарате,
СР - теплоемкость природного газа,
ηоЭ - относительный электрический кпд турбогенераторного блока,
NЭ - электрическая мощность генератора,
- относительная температура уходящих из теплообменного аппарата отработавших в газовой турбине газов,
ТС - начальная температура газов перед газовой турбиной,
GГ - массовый расход природного газа через турбодетандер,
ТУХ - абсолютная температура уходящих из теплообменника газов.
В целях безопасности эксплуатации газотурбинной установки на газораздаточных станциях турбодетандер с высокооборотным компрессором установлены в изолированном от силовой газовой турбины боксе.
Температура подогрева природного газа в теплообменном аппарате должна быть такой, чтобы после турбодетандера она была равна температуре газа в газовой магистрали.
На чертеже представлена принципиальная схема предлагаемой газотурбинной установки с приводом компрессора от турбодетандера.
Газотурбинная установка содержит силовую газовую турбину 1, кинематически связанную с электрогенератором 2. Вход силовой газовой турбины соединен с выходом камеры сгорания 3, вход которой подключен к выходу высокооборотного компрессора 4, соединенного общим валом с турбодетандером 5. Вход турбодетандера 5 через теплообменный аппарат 6 соединен с высоконапорной магистралью природного газа 7. Другой вход теплообменного аппарата 6 соединен с газовой турбиной 1 трубопроводом отработанных газов 8.
Камера сгорания 3 по топливу соединена магистралью 9 с высоконапорной магистралью природного газа 7 через дроссельную задвижку 11 и с низконапорной линией природного газа топливной магистралью 10 с регулирующим клапаном 12.
Газотурбинная установка работает следующим образом.
Природный газ из высоконапорной магистрали 7 через теплообменный аппарат 6 поступает на вход турбодетандера 5, после которого температура газа снижается до температуры в высоконапорной магистрали природного газа 7, а давление падает до давления в магистрали, подводящей природный газ к потребителю. В свою очередь сжатый воздух после высокооборотного компрессора подается в камеру сгорания 3, обеспечивая здесь процесс горения природного газа и повышая до расчетного значения температуру продуктов сгорания перед силовой газовой турбиной 1. После силовой газовой турбины 1 продукты сгорания направляются к теплообменному аппарату 6, где обеспечивается нагрев природного газа до такой температуры, чтобы после турбодетандера 5 температура природного газа была равна температуре газа в высоконапорной магистрали 7, подводящей природный газ к теплообменному аппарату 6.
При отделении высокооборотного компрессора 4 от силовой газовой турбины 1 и использовании для его привода внешнего по отношению к газотурбинной установке источника мощности (в данном случае турбодетандера 5) степень сжатия воздуха ε в высокооборотном компрессоре 4 определяется при фиксированной температуре Т0 газов перед силовой газовой турбиной 1 только температурой после газовой турбины, необходимой для нагрева природного газа в теплообменном аппарате 6 и в очень малой степени влияет на абсолютный электрический кпд рассматриваемой ГТУ, так как высокооборотный компрессор 4 приводится в работу от постороннего источника мощности (турбодетандера 5).
При сформулированном условии согласно проведенным вариантным расчетам степень сжатия воздуха в высокооборотном компрессоре 4 может быть снижена с 15-20, как в обычных ГТУ до 5-7 в предлагаемой ГТУ. Соответственно снижается число ступеней сжатия в высокооборотном компрессоре 4 и число ступеней расширения в силовой газовой турбине 1, что при возможности использования высокооборотного турбодетандера 5 ведет к сокращению массогабаритных показателей всей установки.
Далее соединение силовой газовой турбины 1 только с электрогенератором 2 позволяет полезно использовать всю мощность силовой газовой турбины 1 и при заданной электрической мощности на 50% по сравнению с обычной схемой ГТУ сократить фактическую мощность турбины.
Отделение высокооборотного компрессора 4 от высокотемпературной камеры сгорания 3 ГТУ, работающей в автономном режиме на газораздаточной станции, имеет принципиальное значение с точки зрения безопасной эксплуатации такой установки, так как в этом случае турбодетандер 5 совместно с высокооборотным компрессором 4 образует отдельный низкотемпературный блок, полностью изолированный от высокотемпературной силовой газовой турбины 1. В этом случае резко снижается вероятность возгорания природного газа, улучшаются условия эксплуатации заднего подшипника высокооборотного компрессора 3, поскольку он работает в условиях относительно низких температур, и существенно упрощается ремонт и профилактическое обслуживание силовой газовой турбины 1.
название | год | авторы | номер документа |
---|---|---|---|
Газотурбодетандерная энергетическая установка тепловой электрической станции | 2018 |
|
RU2699445C1 |
ТУРБОДЕТАНДЕРНАЯ СИСТЕМА УТИЛИЗАЦИИ ТЕПЛОТЫ ЦИРКУЛЯЦИОННОЙ ВОДЫ НА КОНДЕНСАЦИОННЫХ БЛОКАХ ПАРОВЫХ ТУРБИН ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2015 |
|
RU2605878C1 |
Способ работы газотурбодетандерной энергетической установки тепловой электрической станции | 2017 |
|
RU2656769C1 |
СПОСОБ ПОВЫШЕНИЯ КПД И МОЩНОСТИ ДВУХКОНТУРНОЙ АТОМНОЙ СТАНЦИИ | 2006 |
|
RU2335641C2 |
КОМБИНИРОВАННАЯ ЭНЕРГЕТИЧЕСКАЯ ГАЗОТУРБОДЕТАНДЕРНАЯ УСТАНОВКА КОМПРЕССОРНОЙ СТАНЦИИ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА | 2018 |
|
RU2712339C1 |
ДВУХРОТОРНЫЙ ВОЗДУШНЫЙ КОМПРЕССОР ДЛЯ ПАРОГАЗОВЫХ УСТАНОВОК | 2012 |
|
RU2529296C2 |
СПОСОБ РАБОТЫ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ | 2013 |
|
RU2525041C1 |
ТУРБОДЕТАНДЕРНАЯ ГЕНЕРАТОРНАЯ УСТАНОВКА И СИСТЕМА ОТБОРА ЭНЕРГИИ ПОТОКА ПРИРОДНОГО ГАЗА ИЗ ГАЗОПРОВОДА | 2013 |
|
RU2564173C2 |
ТЕПЛОТУРБОДЕТАНДЕРНАЯ УСТАНОВКА В СИСТЕМЕ ГРС | 2006 |
|
RU2330968C2 |
РЕГЕНЕРАТИВНАЯ ГАЗОТУРБОДЕТАНДЕРНАЯ УСТАНОВКА | 2013 |
|
RU2549004C1 |
Изобретение относится к области энергетического машиностроения и может быть использовано как при создании мощных парогазовых установок, так и для эффективного использования давления природного газа на газораспределительных станциях и газорегуляторных пунктах с получением свободной механической энергии, которую можно использовать, например, для независимого привода компрессора газотурбинной установки. Газотурбинная установка содержит компрессор, камеру сгорания, силовую газовую турбину, электрогенератор, теплообменный аппарат. Выход из компрессора подключен к входу камеры сгорания. Выход камеры сгорания соединен с входом силовой газовой турбины. Теплообменный аппарат соединен входом с высоконапорной магистралью природного газа, а выходом с линией подвода природного газа к турбодетандеру. Греющей средой теплообменного аппарата являются горячие газы, выходящие из силовой газовой турбины. Компрессор выполнен высокооборотным с независимым от силовой газовой турбины турбодетандерным приводом. Силовая газовая турбина кинематически связана только с электрогенератором. Степень сжатия воздуха в высокооборотном компрессоре определяется из защищаемого настоящим изобретением соотношения. Изобретение уменьшает массогабаритные показатели установки, повышает безопасность ее эксплуатации. 2 з.п. ф-лы, 1 ил.
ε - степень сжатия воздуха в компрессоре,
ΔT - нагрев природного газа в теплообменном аппарате,
Сp - теплоемкость природного газа,
ηоэ - относительный электрический КПД турбогенераторного блока,
Nэ - электрическая мощность генератора,
- относительная температура уходящих из теплообменного аппарата отработавших в газовой турбине газов,
Тc - начальная температура газов перед газовой турбиной,
Gг - массовый расход природного газа через турбодетандер,
Тyx - абсолютная температура уходящих из теплообменника газов.
ГАЗОТУРБОДЕТАНДЕРНАЯ УСТАНОВКА ДЛЯ РАБОТЫ НА ПРИРОДНОМ ГАЗЕ | 1992 |
|
RU2013615C1 |
СПОСОБ ПУСКА И ГАЗОСНАБЖЕНИЯ ЭНЕРГЕТИЧЕСКОЙ ГАЗОТУРБИННОЙ УСТАНОВКИ | 1994 |
|
RU2111370C1 |
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ДЛЯ РЕДУЦИРОВАНИЯ ДАВЛЕНИЯ ПРИРОДНОГО ГАЗА | 1991 |
|
RU2005897C1 |
СПОСОБ РАБОТЫ КОМБИНИРОВАННОЙ ГАЗОТУРБИННОЙ УСТАНОВКИ СИСТЕМЫ РАСПРЕДЕЛЕНИЯ ПРИРОДНОГО ГАЗА И КОМБИНИРОВАННАЯ ГАЗОТУРБИННАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2013616C1 |
Способ изготовления молибденового электрода термоэмиссионного преобразователя | 1987 |
|
SU1468311A1 |
US 5782081 A, 21.07.1998. |
Авторы
Даты
2008-11-20—Публикация
2007-02-09—Подача