УСТРОЙСТВО МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ Российский патент 2008 года по МПК H03C5/00 

Описание патента на изобретение RU2341868C2

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых АЧХ и ФЧХ фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов путем интерполяции на заданном количестве частот.

Известен способ манипуляции (модуляции) параметров отраженного сигнала, состоящий в том, что входное сопротивление устройства манипуляции изменяют таким образом, что коэффициент отражения этого устройства изменяет фазу на π, π/2, π/4, причем для разделения входного и отраженного сигнала используют циркулятор [Радиопередающие устройства / Под редакцией О.А.Челнокова. - М.: Радио и связь, 1982, стр.152-156]. Известно устройство реализации этого способа [там же], состоящее из циркулятора, первый вход которого подключен к источнику сигнала, третий вход подключен к нагрузке, а второй подключен к отрезку разомкнутой линии передачи длиной λ/4, в начале которой включен p-i-n диод.

Если диод закрыт, то от сечения, в котором он включен, происходит отражение, отраженная волна попадает в нагрузку с сопротивлением 50 Ом. Если диод открыт, то отражение происходит от конца линии. Фаза отраженного сигнала в одном состоянии диода отличается от фазы отраженного сигнала в другом состоянии диода на π. При необходимости изменения разности фаз длина отрезка линии передачи изменяется соответствующим образом.

Недостатком этого способа и устройства его реализации является то, что в двух состояниях диода изменяется только фаза отраженного сигнала, причем заданные значения разности фаз отраженного сигнала в двух состояниях диода обеспечивается только на одной фиксированной частоте. Другим недостатком является постоянство амплитуды отраженного сигнала в двух состояниях диода, то есть отсутствие манипуляции амплитуды, что сужает функциональные возможности. Например, это не позволяет обеспечить два канала радиосвязи на одной несущей частоте [один канал можно образовать с помощью манипуляции амплитуды, а другой с помощью манипуляции фазы, или не позволяет обеспечить кодировку передаваемой информации]. Третьим недостатком следует считать большие массы и габариты, связанные с необходимостью использования отрезков линии передачи. Четвертым недостатком является то, что устройство манипуляции, состоящее из управляемой и неуправляемой частей, включается между источником сигнала и нагрузкой, которые имеют определенные значения сопротивлений. Источник сигнала имеет чисто действительное сопротивление (второй вход). Нагрузка для отраженного сигнала (третий вход) имеет также действительное сопротивление. Манипулятор подключен к разомкнутой (бесконечное сопротивление) или замкнутой к (нулевое сопротивление) линии передачи. Следующим важным недостатком является то, что данный способ и данное устройство не обеспечивают манипуляцию амплитуды и фазы проходного сигнала. Основным недостатком является отсутствие возможности усиления сигнала.

Известен способ манипуляции фазы отраженного сигнала, основанный на использовании двухимпедансных устройств СВЧ [В.Г.Соколинский, В.Г.Шейнкман. Частотные и фазовые модуляторы и манипуляторы. - М.: Радио и связь, 1983, стр.146-158]. Известно устройство реализации этого способа [там же], состоящее из определенного количества реактивных элементов типа L, C, значения которых выбраны из условия обеспечения требуемой произвольной разности фаз коэффициента отражения.

По сравнению с предыдущими способом и устройством данный способ и устройство его реализации не требуют использования полупроводниковых диодов только в открытом и только закрытом состояниях. При любых состояниях диодов, определяемых двумя уровнями низкочастотного управляющего воздействия, при определенных значениях параметров типа L, C может быть обеспечена заданное значение разности фаз отраженного сигнала на фиксированной частоте. Если амплитуда управляющего низкочастотного сигнала между указанными двумя уровнями изменяется непрерывно, то обеспечивается модуляция.

Недостатком является то что, как и первый способ и устройство, манипулятор может быть включен только между определенными сопротивлениями. Следующим важным недостатком является то, что данный способ и данное устройство не обеспечивают манипуляцию амплитуды и фазы и не усиливают амплитуду проходного сигнала.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ [Головков А.А. Устройство для модуляции отраженного сигнала. Авт. св-во №1800579 от 09.10.1992], состоящий в том, что неуправляемую часть (согласующе-фильтрующее устройство) формирует из определенным образом соединенных между собой двухполюсников, сопротивление каждого двухполюсника выбирают из условия обеспечения одинакового заданного двухуровневого закона изменения амплитуды и фазы отраженного сигнала при изменении управляемого элемента из одного состояния в другое под действием управляющего низкочастотного напряжения или тока.

Известно устройство (прототип) реализации способа [там же], содержащее циркулятор, первое и третье плечи которого являются СВЧ-входом и СВЧ-выходом, а во второе плечо включены реактивный четырехполюсник и полупроводниковый диод, подключенный к источнику низкочастотного управляющего воздействия, при этом четерехполюсник выполнен в виде Т-образного соединения двухполюсников со значениями реактивных сопротивлений, которые выбраны из условия обеспечения требуемых законов двухуровневого изменения амплитуды и фазы отраженного сигнала на двух заданных частотах. Так же как и в предыдущих способе и устройстве реализация возможна модуляция фазы и амплитуды, если управляющий сигнал изменяется непрерывно.

Недостатком является то, что, как и в первых двух способах и устройствах, манипулятор может быть включен только между определенными сопротивлениями. Следующим важным недостатком является то, что данный способ и данное устройство не обеспечивают манипуляцию амплитуды и фазы и усиление амплитуды проходного сигнала.

Техническим результатом изобретения является обеспечение манипуляции амплитуды и фазы и усиление амплитуды проходного сигнала на заданном количестве фиксированных частот при включении манипулятора между произвольными сопротивлениями.

Указанный результат достигается тем, что в устройстве реализации способа модуляции амплитуды и фазы многочастотных сигналов, состоящем из источника высокочастотного сигнала, неуправляемой части, выполненной в виде реактивного четырехполюсника, управляемой части, подключенной параллельно к источнику низкочастотного управляющего сигнала, дополнительно управляемая часть выполнена в виде трехполюсного управляемого элемента, включаемого между источником высокочастотного сигнала и неуправляемой частью, реактивный четырехполюсник выполнен в виде симметричного П-образного соединения трех реактивных двухполюсников, параллельно этому соединению включена нагрузка для проходного высокочастотного сигнала с произвольными импедансами на трех заданных частотах, а двухполюсники с реактивными сопротивлениями X1k, X2k, X3k симметричного П-образного соединения выполнены из последовательного контура Ln, Cn, параллельно соединенного с индуктивностью L0n, при этом реактивные сопротивления двухполюсников на каждой из трех заданных частот ωk выбраны с помощью следующих математических выражений:

где

k=1, 2, 3 - номер частоты; n=1, 2, 3 - номер двухполюсника, считая со стороны источника высокочастотного сигнала;

r0k, x0k - заданные действительные и мнимые части комплексного сопротивления источника сигнала; rнk, хнk - заданные действительные и мнимые части комплексного сопротивления нагрузки; z11',''=r11',''+ix11',''; z12',''=r12',''+ix12',''; z21',''=r21',''+ix21',''; z22',''=r22',''+ix22','' - заданные действительные и мнимые части комплексных элементов матрицы сопротивлений трехполюсного управляемого элемента в двух состояниях, определяемых двумя уровнями тока и напряжения источника низкочастотного управляющего сигнала; m21n, ϕ21n - заданные отношения модулей и разность фаз коэффициентов передачи в двух состояниях управляемого элемента на трех частотах; х11, x21 - численные значения элементов матрицы сопротивлений.

На фиг.1 показана схема устройства модуляции амплитуды и фазы сигналов, реализующего способ-прототип.

На фиг.2 приведена схема предлагаемого устройства модуляции амплитуды и фазы сигналов проходного сигнала, реализующее предлагаемый способ модуляции амплитуды и фазы многочастотных сигналов для случая k=1, 2, 3 (количество частот интерполяции).

На фиг.3 изображена высокочастотная часть структурной схемы предлагаемого устройства модуляции амплитуды и фазы сигналов проходного сигнала.

Устройство-прототип содержит циркулятор 1 с входным 2, нагрузочным 3 и выходным 4 плечами, три двухполюсника с реактивными сопротивлениямих x1k - 5, x2k - 6, x3k - 7, соединенных между собой по П-схеме, а также полупроводниковый диод 8, подключенный параллельно к источнику сигнала модуляции 9. Двухполюсник 7 подключен к диоду 8, двухполюсник 5 - к нагрузочному плечу 3 циркулятора 1.

Принцип действия устройства манипуляции параметров сигнала, реализующего способ-прототип, состоит в следующем.

Высокочастотный сигнал от источника (на фигуре 1 не показан) через входное плечо 2 циркулятора 1 поступает в нагрузочное плечо 3. В результате взаимодействия пришедшего сигнала с реактивными элементами и диодом и благодаря специальному выбору значений реактивных элементов двухполюсников, значения фаз и амплитуд отраженных сигналов на двух частотах оказывается такими, что в результате их интерференции на выходное плечо 4 циркулятора 1 поступают сигналы, амплитуда и фаза которых в одном состоянии диода 8, определяемом одним крайним значением сигнала модуляции источника 9, отличаются от амплитуды и фазы этих сигналов в другом состоянии диода 8 на заданные величины на соответствующих двух частотах. Максимальная девиация фазы может составлять 360°, минимальная - ноль, максимальное отношение амплитуд равно ∞.

Предлагаемое устройство модуляции параметров сигнала (фиг.2) содержит источник высокочастотного сигнала 10, три двухполюсника 5, 6, 7 с реактивными сопротивлениями х1k, х2k, x3k, соединенных между собой по симметричной Т-схеме, а также управляемый трехполюсный элемент 8, подключенный к источнику сигнала модуляции 9. двухполюсник 7 подключен к нагрузке 11 для проходного сигнала. Двухполюсник 5 подключен к одному из электродов управляемого трехполюсного элемента 8. Второй из электродов элемента 8 подключен к источнику сигнала 10. Третий электрод элемента 8 является общим, то есть подключен к заземленной шине. Возможны три варианта включения управляемого трехполюсного элемента - с общей базой, с общим эмиттером, с общим коллектором.

Это устройство функционирует следующим образом. Благодаря специальному выбору количества реактивных элементов двухполюсников 5, 6, 7 схемы их соединений и значений их параметров при переключении управляющего (модулирующего) сигнала на управляемом трехполюсном элементе будет происходить манипуляция параметров проходного сигналов на заданном количестве частот в общем случае различными законами двухуровневого изменения амплитуды и фазы. При непрерывном изменении амплитуда управляющего сигнала будет реализована модуляция проходного сигналов по амплитуде и фазе в общем случае по произвольным законам.

Докажем возможность реализации указанных свойств.

Пусть на фиксированной частоте известны комплексные сопротивления источника сигнала z0=r0+jx0, нагрузки zн=rн+jxн, а также матрица сопротивлений транзистора в двух состояниях определяемых двумя уровнями низкочастотного управляющего сигнала

и соответствующая ей классическая матрица передачи [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1971, 388 с].

Элементы матрицы сопротивлений имеют вид:

где один штрих означает первое состояние транзистора, а два штриха - второе.

Предполагается, что СФУ построено только на реактивных элементах. Это означает, что оно может быть описано с помощью следующей искомой матрицы сопротивлений

и соответствующей ей классической матрицы передачи

В матрицах (2), (4) |z',''|=z11',''z22',''-z12',''z21',''; |x|=-х11х22-x221, где учтено свойство взаимности неуправляемой части или согласующе-фильтрующего устройства (СФУ) (х12=-х21) [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1971, 388 с.]. Предполагается, что матрица сопротивлений управляемой части (например, транзистора) известна для любого варианта включения в цепь управляемого трехполюсного элемента - с общей базой, с общим эмиттером, с общим коллектором.

Рассмотрим вариант манипулятора, изображенный на фиг.3, характеризуемый включением управляемого трехполюсного элемента между источником сигнала и СФУ.

Общая нормированная классическая матрица передачи манипулятора имеет вид:

Выражение для коэффициента передачи получим, используя известную связь между элементами классической матрицы передачи и элементами матрицы рассеяния с учетом (5):

Пусть требуется определить минимальное количество независимых реактивных элементов СФУ и значения их параметров, при которых манипулятор в двух состояниях транзистора обеспечивает заданные отношения модулей и разность фаз коэффициентов передачи:

После громоздких преобразований получим систему двух алгебраических уравнений, состоящих из действительной и мнимой составляющих комплексного уравнением, сформированного после подстановки (6) в (7):

где

.

Решение системы (8) позволяет найти новые взаимосвязи между элементами матрицы сопротивлений СФУ, которые являются оптимальными по критерию реализации закона двухуровневого изменения коэффициента передачи (7):

где

Поскольку , то областью физической реализуемости является область изменения ϕ21, в пределах которой выполняется условие:

которое приводится к виду:

Решение (11) приводит к ограничению на разность фаз ϕ21:

где

Обеспечение положительности подкоренного выражения в (13) есть дополнительное условие физической реализуемости, которое накладывает ограничения на величину m21. Равенство нулю подкоренного выражения описывает границу области физической реализуемости и имеет вид биквадратного уравнения:

где

Дополнительными к условиям (12) областями физической реализуемости являются области изменения , которые удовлетворяют следующим ограничениям:

где

Подкоренное выражение в (16) всегда положительно.

Полученная система двух взаимосвязей (9) между элементами матрицы проводимостей оптимальных СФУ транзисторных манипуляторов означает, что СФУ должно содержать не менее двух реактивных элементов с независимыми параметрами. Значения этих параметров должны удовлетворять системе двух алгебраических уравнений, сформированных следующим образом. Необходимо выбрать пробную структуру СФУ из количества двухполюсников, не меньшего двух. Далее надо определить матрицу сопротивлений этой структуры. Элементы матрицы, выраженные через конкретные параметры СФУ, нужно подставить в найденные взаимосвязи. Сформированная таким образом система двух алгебраических уравнений решается относительно выбранных двух параметров. Значения остальных параметров могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условий обеспечения устойчивости, требуемой полосы усиления и манипуляции и т.д.

Если кроме взаимности учесть свойство симметрии СФУ (х11=-х22), то взаимосвязи (9) упрощаются и принимают вид:

Использование выражений (9) или (9с) позволяет определить численные значения элементов матрицы сопротивлений СФУ.

В соответствии с разработанным алгоритмом была синтезирована схема СФУ манипуляторов на транзисторах в виде симметричной П-образной схемы соединения трех двухполюсников (фиг.3).

В выражении (10) элементы x11, x21, x22 определены соответствующими взаимосвязями (9с).

Вопросы устойчивости отдельно не освещаются, но можно отметить, что при разработанном подходе к синтезу транзисторных усилителей коэффициент усиления остается ограниченным во всей полосе пропускания. В исследуемых схемах манипуляторов с оптимальными СФУ не рассматривались конкретные типы транзисторов и конкретные варианты их включения - с общим эмиттером (истоком), общей базой (затвором), общим коллектором (стоком). Использование каждого из этих вариантов в рамках разработанного алгоритма параметрического синтеза требует знания матрицы сопротивлений транзистора именно для этого варианта включения.

В соответствии с выработанными рекомендациями нужно найти оптимальные значения сопротивлений двухполюсников СФУ на выбранных фиксированных частотах. Для каждой частоты получится свой набор этих значений. После этого надо сформировать соответствующие двухполюсники таким образом, чтобы они реализовали полученные значения сопротивлений на частотах интерполяции. При разумном выборе частот интерполяции нередко оказывается достаточным взять их количество, равным трем, чтобы обеспечить 88-90% предельной полосы согласования z0 и zн по критерию (1).

В качестве примера формирования реактивных двухполюсников приведены результаты определения параметров L, С схемы, изображенной на фиг.3 для интерполяции АЧХ и ФЧХ на трех частотах. Реактивное сопротивление n-го двухполюсника на k-й частоте равны:

где k=1, 2, 3. Решение системы трех уравнений (18) получается в следующем виде:

где

Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений неизвестны способы одновременной многочастотной модуляции параметров (амплитуды и фазы) проходного сигналов и устройство его реализации, состоящее из управляемого трехполюсного элемента, включенного между источником сигнала и СФУ, которое сформировано из симметричной П-схемы соединения трех двухполюсников, сформированных из последовательного колебательного контура Ln, Сn, паралельно соединенного с индуктивностью L0n, с определенными по соответствующим математическим выражениям параметрам.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (формирование неуправляемой части определенным образом соединенных между собой двухполюсников из условия обеспечения двухуровневого изменения амплитуды и фазы проходного сигналов на заданном количестве частот при изменении состояния управляемого трехполюсного элемента, включенного между источником сигнала и СФУ по любой из трех схем (с общей базой, с общим эмиттером, с общим коллектором) при произвольных значениях сопротивлений источника сигнала и нагрузок) и заявленные схемы соединений элементов L, С, формирующих двухполюсник и математические выражения для определения их параметров обеспечивают одновременно манипуляцию амплитуды и фазы и усиление амплитуды проходного сигнала.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью транзисторы, индуктивности и емкости, сформированные в заявленную схему СФУ в виде симметричного П-образного соединения двухполюсников. Значения параметров емкостей и индуктивностей однозначно могут быть определены с помощью математических выражений, приведенных в формуле изобретения.

Технико-экономическая эффективность предложенного способа и устройства его реализации заключается в одновременном обеспечении манипуляции амплитуды и фазы и усиления амплитуды проходного сигнала в общем случае по разным законам на трех заданных частотах интерполяции требуемых АЧХ и ФЧХ в двух состояниях управляемого трехполюсного элемента.

Похожие патенты RU2341868C2

название год авторы номер документа
УСТРОЙСТВО МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ 2006
  • Головков Александр Афанасьевич
  • Киселев Андрей Николаевич
RU2341013C2
УСТРОЙСТВО МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ 2006
  • Головков Александр Афанасьевич
  • Киселев Андрей Николаевич
RU2350010C2
СПОСОБ МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2006
  • Головков Александр Афанасьевич
  • Киселев Андрей Николаевич
RU2341867C2
СПОСОБ МНОГОЧАСТОТНОЙ МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2005
  • Головков Александр Афанасьевич
  • Минаков Валерий Григорьевич
RU2294051C2
УСТРОЙСТВО МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ 2005
  • Головков Александр Афанасьевич
  • Минаков Валерий Григорьевич
RU2310975C2
УСТРОЙСТВО МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ 2006
  • Головков Александр Афанасьевич
  • Мальцев Александр Михайлович
  • Науменко Андрей Анатольевич
RU2341865C2
УСТРОЙСТВО МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ 2006
  • Головков Александр Афанасьевич
  • Мальцев Александр Михайлович
  • Науменко Андрей Анатольевич
RU2328817C2
УСТРОЙСТВО МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ 2006
  • Головков Александр Афанасьевич
  • Мальцев Александр Михайлович
  • Науменко Андрей Анатольевич
RU2341014C2
СПОСОБ МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2005
  • Головков Александр Афанасьевич
  • Минаков Валерий Григорьевич
RU2281602C1
УСТРОЙСТВО МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ 2005
  • Головков Александр Афанасьевич
  • Минаков Валерий Григорьевич
RU2305876C2

Иллюстрации к изобретению RU 2 341 868 C2

Реферат патента 2008 года УСТРОЙСТВО МОДУЛЯЦИИ АМПЛИТУДЫ И ФАЗЫ МНОГОЧАСТОТНЫХ СИГНАЛОВ

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов. Достигаемый технический результат - обеспечение манипуляции амплитуды и фазы и усиление амплитуды проходного сигнала на заданном количестве фиксированных частот при включении манипулятора между произвольными сопротивлениями. Устройство содержит источник высокочастотного сигнала, трехполюсный управляемый элемент, который подключен к источнику низкочастотного управляющего сигнала, реактивный четырехполюсник, который выполнен в виде симметричного П-образного соединения трех реактивных двухполюсников, нагрузку для проходного высокочастотного сигнала с произвольными импедансами на трех заданных частотах, при этом двухполюсники с реактивными сопротивлениями выполнены из последовательного контура, параллельно соединенного с индуктивностью, а реактивные сопротивления двухполюсников на каждой из трех заданных частот выбраны в соответствии с указанными в формуле изобретения математическими выражениями. 3 ил.

Формула изобретения RU 2 341 868 C2

Устройство реализации способа модуляции амплитуды и фазы многочастотных сигналов, состоящее из источника высокочастотного сигнала, неуправляемой части, выполненной в виде реактивного четырехполюсника, управляемой части, подключенной параллельно к источнику низкочастотного управляющего сигнала, отличающееся тем, что управляемая часть выполнена в виде трехполюсного управляемого элемента, включаемого между источником высокочастотного сигнала и неуправляемой частью, реактивный четырехполюсник выполнен в виде симметричного П-образного соединения трех реактивных двухполюсников, параллельно этому соединению включена нагрузка для проходного высокочастотного сигнала с произвольными импедансами на трех заданных частотах, а двухполюсники с реактивными сопротивлениями X1k, Х2k, X3k симметричного П-образного соединения выполнены из последовательного контура Ln, Cn, параллельно соединенного с индуктивностью L0n, при этом реактивные сопротивления двухполюсников на каждой из трех заданных частот ωk выбраны с помощью следующих математических выражений:

Документы, цитированные в отчете о поиске Патент 2008 года RU2341868C2

БАЛАКИРЕВ М.В
и др
Радиопередающие устройства
/Под ред
О.А.Челнокова
- М.: Радио и связь
Устройство для видения на расстоянии 1915
  • Горин Е.Е.
SU1982A1
Способ последовательного согласования импедансов в диапазоне дискретных частот 1989
  • Головков Александр Афанасьевич
  • Нечаев Юрий Борисович
  • Винокурова Наталия Николаевна
SU1778827A1
Устройство для модуляции отраженного сигнала 1990
  • Головков Александр Афанасьевич
SU1800579A1
Теплоэнергетическая установка 1985
  • Аракелян Эдик Койрунович
  • Аракчеев Евгений Петрович
  • Зайцев Алексей Николаевич
SU1231237A1
US 5155455 A, 13.10.1992.

RU 2 341 868 C2

Авторы

Головков Александр Афанасьевич

Киселев Андрей Николаевич

Даты

2008-12-20Публикация

2006-06-27Подача