ДАТЧИК ДАВЛЕНИЯ Российский патент 2008 года по МПК G01L9/00 

Описание патента на изобретение RU2342642C1

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения давления с повышенной точностью в широком диапазоне температур.

Известен датчик давления, содержащий корпус с закрепленной в нем мембраной, на которой сформированы тензорезисторы, объединенные в мостовую схему, и контактные площадки, предназначенные для подключения к внешним устройствам [1].

Недостатком данного устройства является невысокая точность измерения, обусловленная неполной температурной компенсацией во всем рабочем диапазоне температур. Это связано с нелинейной зависимостью выходного сигнала, вследствие чего температурную погрешность удается скомпенсировать на определенном узком температурном участке, в то время как на других участках происходит иногда увеличение температурной погрешности.

Наиболее близким к предлагаемому по технической сущности является датчик давления, содержащий корпус с закрепленной в нем мембраной, на которой сформированы тензорезисторы, соединенные в два измерительных моста, причем тензорезисторы одного моста расположены попарно, симметрично с тензорезисторами другого моста относительно центра мембраны. Температурные коэффициенты сопротивления и тензочувствительности тензорезисторов одного моста на порядок больше соответствующих коэффициентов другого моста. Коэффициенты резисторов обоих мостов имеют один и тот же порядок [2].

Недостатком известного датчика является то, что в широком температурном диапазоне функции изменения обоих мостов имеют нелинейный характер и обычным вычитанием этих двух сигналов точность коррекции температурной погрешности не обеспечивается.

Кроме того, формирование топологии из двух тензоматериалов приводит к различной временной стабильности тензорезисторов одного моста по сравнению с тензорезисторами другого из-за неодинаковой структуры тензорезисторов. В результате чего точность измерения снижается.

Цель изобретения - повышенная точность измерения во всем рабочем диапазоне температур за счет линеаризации температурной характеристики выходного сигнала мостовой схемы.

Поставленная задача достигается тем, что в датчике давления, содержащем корпус с закрепленной в нем мембраной, на которой сформированы тензорезисторы, соединенные в два моста, мосты выполнены с различной топологией из одного и того же материала, соединены встречно, причем один из мостов выполнен на утолщенной периферийной части мембраны и является компенсационным.

На фиг.1 показана конструкция датчика давления; на фиг.2 - размещение тензорезисторов на мембране (топология); на фиг.3 - измерительная схема.

Датчик включает корпус 1, мембрану 2, выполненную за одно целое с корпусом. На мембране сформированы два моста, защищенные от окружающей среды гермокорпусом 3. При этом один из мостов состоит из тензорезисторов R1-R4 и является измерительным, а другой - из тензорезисторов R5-R8 и является компенсационным, контактные площадки служат для подключения мостовых измерительных цепей к общей измерительной схеме (фиг.3).

К объединенным входным диагоналям мостовых схем подводится напряжение питания Uпит источника питания. Выходные диагонали мостовых схем посредством внешних коммутирующих контактов соединены встречно в соответствии с измерительной схемой, приведенной на фиг.3.

Датчик работает следующим образом.

При подаче напряжения питания на мостовые схемы на их выходных диагоналях возникают выходные сигналы. Так как выходные диагонали мостовых схем включены встречно, то выходной сигнал компенсационной мостовой схемы вычитается из выходного сигнала измерительной мостовой схемы и на выходе получается разностный выходной сигнал, в идеальном случае равный нулю.

При подаче измеряемого давления на воспринимающую мембрану 2 последняя прогибается. Тензорезисторы R1-R4 испытывают деформацию. Вследствие этого на выходе мостовой измерительной схемы появляется выходной сигнал, пропорциональный измеряемому давлению, а выходной сигнал компенсационной мостовой схемы не изменяется, т.к. она не "чувствует" давление, т.е. на общей выходной диагонали мостовых схем выходной сигнал будет пропорционален измеряемому давлению.

При влиянии на мостовые схемы температуры их выходные сигналы изменяются. Так как тензорезисторы обоих мостовых схем выполнены из одного и того же материала в едином технологическом цикле, то нелинейный характер изменения начальных выходных сигналов обоих мостовых схем во всем температурном диапазоне будет иметь одинаковое значение, и, следовательно, при вычитании сигнала компенсационной мостовой схемы из сигнала измерительной мостовой схемы нелинейный характер температурной погрешности начальных выходных сигналов обоих мостовых схем взаимно компенсируется и изменение результирующего начального выходного сигнала от температуры во всем рабочем диапазоне будет иметь линейный характер, что позволит увеличить точность измерения давления за счет более полной компенсации температурной погрешности начального выходного сигнала.

Применение данной измерительной схемы позволяет также получить следующие преимущества:

- компенсировать погрешность начального выходного сигнала от нестабильности напряжения питания, т.к. напряжение питания на мостовые схемы подается от одного источника, то любые изменения напряжения питания вызывают одинаковые изменения начальных выходных сигналов мостовых схем и при вычитании они аннулируются,

- уменьшить временную нестабильность начального выходного сигнала, т.к. мостовые измерительные схемы напыляются из одного и того же материала в едином технологическом процессе, то временные изменения их выходных сигналов имеют сравнимые значения и при вычитании сигналов временная нестабильность результирующего сигнала значительно уменьшается,

- уменьшить погрешность от влияния нескомпенсированной термо-ЭДС мостовых схем вследствие их взаимной компенсации,

- кроме того, размещение компенсационной мостовой схемы на периферийной части мембраны позволяет за счет большого диаметра утолщенной периферийной части мембраны относительно ее рабочей части сформировать тензорезисторы компенсационной схемы с сопротивлением большим, чем сопротивление тензорезисторов измерительной мостовой схемы, что позволяет минимизировать снижение чувствительности измерительной мостовой схемы, возникающее при подключении к ней компенсационной мостовой схемы.

Источники информации

1. АС №2064829 C1, "Датчик давления". Приоритет 10.11.1984. Опубл. 15.12.1994. БИ №23.

2. АС №1663460 A1, "Датчик давления". Приоритет 13.02.1989. Опубл. 15.07.1991. БИ №26.

Похожие патенты RU2342642C1

название год авторы номер документа
ДАТЧИК ДАВЛЕНИЯ 2011
  • Полунин Владимир Святославович
  • Шараева Вера Петровна
  • Вологина Валентина Николаевна
  • Купоросова Наталья Ивановна
  • Моисеева Светлана Борисовна
RU2464538C1
ДАТЧИК ДАВЛЕНИЯ 2023
  • Полунин Владимир Святославович
  • Шараева Вера Петровна
  • Козлова Наталья Анатольевна
  • Козлова Юлия Александровна
RU2805781C1
ДАТЧИК ДАВЛЕНИЯ 2008
  • Полунин Владимир Святославович
  • Тихомиров Дмитрий Вячеславович
  • Шараева Вера Петровна
RU2377517C1
Устройство для измерения давления 1990
  • Зиновьев Виктор Александрович
  • Кузекмаев Андрей Васильевич
  • Ворожбитов Анатолий Иванович
SU1744533A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ ВЕЛИЧИН (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Володин Николай Михайлович
RU2346250C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ 1991
  • Зиновьев В.А.
  • Кузекмаев А.В.
RU2024830C1
Датчик давления 1989
  • Зиновьев Виктор Александрович
  • Кузекмаев Андрей Васильевич
SU1663460A1
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С ЧАСТОТНЫМ ВЫХОДНЫМ СИГНАЛОМ 2009
  • Васильев Валерий Анатольевич
  • Громков Николай Валентинович
RU2408857C1
Датчик давления 1988
  • Белозубов Евгений Михайлович
  • Зиновьев Виктор Александрович
  • Михайлов Петр Григорьевич
SU1649319A1
ДАТЧИК ДАВЛЕНИЯ 1991
  • Ворожбитов А.И.
  • Назаров В.И.
  • Педоренко Н.П.
  • Потапов А.В.
RU2010194C1

Иллюстрации к изобретению RU 2 342 642 C1

Реферат патента 2008 года ДАТЧИК ДАВЛЕНИЯ

Изобретение может быть использовано для измерения давления с повышенной точностью в широком диапазоне рабочих температур. Техническим результатом изобретения является повышение точности измерения давления за счет линеаризации температурной характеристики начального выходного сигнала датчика во всем рабочем диапазоне температур, компенсация погрешности начального выходного сигнала от нестабильности напряжения питания, уменьшение погрешности от нескомпенсированной термо-ЭДС, увеличение временной стабильности начального выходного сигнала. Датчик давления содержит корпус с закрепленной в нем мембраной. На мембране сформированы тензорезисторы (R1-R8), выполненные с различной топологией из одного и того же материала и соединенные в два моста (R1-R4; R5-R8). Один из мостов выполнен на утолщенной периферийной части мембраны и является компенсационным. Выходные диагонали мостов соединены встречно. 3 ил.

Формула изобретения RU 2 342 642 C1

Датчик давления, содержащий корпус с закрепленной в нем мембраной, на которой сформированы тензорезисторы, соединенные в два моста, отличающийся тем, что мосты выполнены с различной топологией из одного и того же материала и соединены встречно, причем один из мостов выполнен на утолщенной периферийной части мембраны и является компенсационным.

Документы, цитированные в отчете о поиске Патент 2008 года RU2342642C1

Датчик давления 1989
  • Зиновьев Виктор Александрович
  • Кузекмаев Андрей Васильевич
SU1663460A1
ДАТЧИК ДАВЛЕНИЯ 1994
  • Белозубов Е.М.
RU2082124C1
ДАТЧИК ДАВЛЕНИЯ 1984
  • Белозубов Е.М.
RU2024829C1
Датчик давления 1988
  • Белозубов Евгений Михайлович
SU1765729A1
Датчик давления 1987
  • Тихонов Анатолий Иванович
  • Тихоненков Владимир Андреевич
  • Васильев Валерий Анатольевич
  • Зиновьев Виктор Александрович
SU1462128A1
JP 10170370, 26.06.1998.

RU 2 342 642 C1

Авторы

Полунин Владимир Святославович

Тихомиров Дмитрий Вячеславович

Шараева Вера Петровна

Даты

2008-12-27Публикация

2007-05-04Подача