РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА Российский патент 2009 года по МПК F02K9/18 F02K9/30 

Описание патента на изобретение RU2344309C1

Предлагаемое изобретение относится к области ракетной техники, а именно к ракетным двигателям твердого топлива, и может быть использовано в ракетах, ракетных снарядах.

Наиболее близкой к предлагаемому изобретению по ограничительным признакам является конструкция, представленная в патенте США №3180086, заявлено 20.03.1962 г., МКИ Кл. 60-35.6, опубликовано 27.04.65 г. [1], принимаемая авторами за прототип.

Конструкция прототипа представляет собой корпус, сопловое днище с множеством сопел, канальный заряд, прочно скрепленный с корпусом, воспламенитель, при этом сопловое днище защищено покрытием расчетной толщины, способным гореть, например порохом, которое при работе двигателя образует встречный газовый поток, т.н. "газовую подушку" и, противодействуя таким образом газовому потоку заряда, обеспечивает функционирование двигателя.

Достоинством этого ракетного двигателя является высокий коэффициент заполнения топливом, а также применение для защиты соплового днища "активного" покрытия, способного при горении увеличить энергомассовые характеристики двигателя.

К недостаткам рассматриваемого двигателя следует отнести следующее:

1. Для защиты соплового днища преимущественно используется низкоэнергетическое топливо.

2. Применение двух топлив усложняет конструкцию двигателя и технологию его изготовления.

3. Процесс горения покрытия сопровождается эрозионным эффектом, который характеризуется сдувом продуктов сгорания, находящихся в газовой фазе горения, приводящим к резкому увеличению скорости горения покрытия, что требует увеличения толщины, т.е. увеличения доли низкоэнергетического материала покрытия в объеме двигателя.

4. Как показали исследования, в связи с близостью сопел продукты сгорания покрытия под действием скоростного напора газового потока заряда уносятся, не успевая прореагировать, что увеличивает потери импульса двигателя.

5. Газовые потоки продуктов сгорания заряда и покрытия, встречаясь и взаимодействуя, являются источником возмущения газовой среды в двигателе, вызывая в ней акустические колебания, приводящие к недопустимым флуктуациям расчетных параметров двигателя - давления и тяги, и, в этой связи, к снижению надежности.

Указанные недостатки двигателя снижают его функциональную надежность и ограничивают область применения.

Задачей предлагаемого изобретения является повышение функциональной надежности двигателя твердого топлива, оснащенного зарядом канально-щелевой конструкции, и обеспечение его максимального импульса для увеличения дальности полета ракеты.

Технический результат достигается тем, что в ракетном двигателе твердого топлива, содержащем корпус, воспламенитель, сопловое днище с множеством сопел, расположенных по окружности, прочно скрепленный с корпусом канальный заряд твердого топлива имеет канал, переходящий в щелевую часть с множеством щелевых прорезей, каждая из которых обращена к сопловому днищу и выполнена с расширяющимся к торцу заряда участком, длина которого составляет 1,5-1,7 от диаметра критического сечения сопла, а ширина на торце заряда составляет 0,9-1,1 от диаметра критического сечения сопла, при этом количество щелевых прорезей равняется количеству сопел, оси которых расположены в плоскостях симметрии щелевых прорезей, проходящих через ось ракетного двигателя.

Сущность предлагаемого изобретения в том, что конструктивное исполнение каждой щелевой прорези с расширяющимся к торцу заряда участком снижает скорость потока газа на выходе из щелевой прорези, обеспечивая давление во фронте потока, равное установившемуся давлению в предсопловом объеме двигателя, что исключает появление воздействия диссонансных потоков в газовой среде на сопловое днище.

Расположение щелевых прорезей против каждого из сопел таким образом, что оси сопел располагаются в плоскостях симметрии щелевых прорезей, проходящих через ось двигателя, организует плавный вход газовых потоков из щелевых прорезей в сопла, исключающий появление возмущающих факторов, способных вызывать акустические колебания и акустические потери.

На фиг.1 представлен общий вид ракетного двигателя твердого топлива в разрезе, где:

1 - корпус;

2 - сопловое днище с множеством сопел;

3 - сопла;

4 - канально-щелевой заряд;

5 - воспламенитель;

6 - щелевая часть заряда;

7 - щелевые прорези;

8 - предсопловой объем.

На фиг.2 дан вид щелевой прорези, разрез А-А и даны обозначения:

3 - сопла;

7 - щелевые прорези;

ДК - диаметр критического сечения сопла;

LK - длина расширяющегося участка щелевой прорези;

LH - ширина расширяющегося участка щелевой прорези.

Двигатель по предлагаемому изобретению работает следующим образом.

После воспламенения заряда (4) газовый поток движется по каналу заряда и затем по щелевой части заряда (6), разбиваясь на потоки по числу щелевых прорезей (7), проходит по щелевым прорезям, движется в предсопловой объем (8), далее к сопловому днищу с множеством сопел (2) и к соплам (3).

В каждой щелевой прорези (7) в узкой ее части формируется плоский поток с повышенной скоростью, т.н. "тепловой нож", обладающий кумулятивным эффектом, но при движении на участке с расширением скорость газового потока постепенно уменьшается и к моменту достижения торца заряда параметры потока: скорость V, давление Р, температура Т становятся равными установившимся значениям этих параметров в предсопловом объеме двигателя.

Расположение осей сопел в плоскостях симметрии щелевых прорезей, проходящих через ось двигателя, создает условия для плавного входа газовых потоков в сопла без создания возмущающих факторов - источников акустических колебаний.

Ширина расширяющегося участка щелевых прорезей у торца LH по предлагаемому изобретению равна 0,9-1,1 от диаметра критического сечения сопла.

Если ширина расширяющегося участка щелевых прорезей LH у торца заряда будет меньше 0,9 от диаметра критического сечения сопла, появляется узконаправленный газовый поток с повышенными параметрами Р, Т, V, которые вызывают кумулятивный эффект.

Если ширина расширяющегося участка щелевых прорезей LH у торца заряда будет больше 1,1 от диаметра критического сечения сопла, то это повлечет за собой уменьшение массы топлива в заряде и, соответственно, импульса двигателя.

Длина расширяющегося участка щелевых прорезей (LK) по предлагаемому изобретению равна 1,5-1,7 от диаметра критического сечения и выбрана, исходя из обеспечения условия, способствующего снижению давления в газовом потоке в щелевых прорезях к моменту достижения торца заряда до величины, равной установившемуся давлению в предсопловом объеме двигателя, и является минимальной длиной.

Уменьшение длины расширяющегося участка щелевых прорезей (LK) ниже 1,5 от диаметра критического сечения сопла не обеспечивает полного расширения газового потока в пределах заряда, в связи с чем его параметры Р, Т, V на выходе из заряда остаются больше значений этих же параметров в сравнении с установившимися в предсопловом объеме двигателя, что сопряжено с возникновением кумулятивного эффекта.

Увеличение длины расширяющего участка щелевых прорезей (LK) более 1,7 от диаметра критического сечения сопла приводит к снижению массы топлива заряда и, соответственно, к уменьшению импульса двигателя.

Определение основных геометрических параметров предлагаемой конструкции представляло собой многоплановую вариационную задачу поиска оптимального решения, который осуществлялся с учетом требований по обеспечению:

1) акустической стабильности;

2) максимального импульса;

3) надежности двигателя.

В процессе оптимизации из множества вариантов выбраны представленные в предлагаемой конструкции двигателя параметры, которые позволили обеспечить высокие энергомассовые характеристики двигателя, минимальные потери импульса, акустическую стабильность газовых процессов, и, соответственно, высокую надежность конструкции.

Положительный эффект применения заявленной конструкции подтвержден огневыми стендовыми испытаниями (ОСИ) опытных и натурных образцов РДТТ.

ОСИ проводились в научно-производственном комплексе ФГУП "НИИПМ" и ФКП "ГкНИПАС".

Похожие патенты RU2344309C1

название год авторы номер документа
Ракетный двигатель твердого топлива 2018
  • Девяткин Сергей Петрович
RU2685751C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2005
  • Раимов Ринат Хамидович
  • Колесников Виталий Иванович
  • Никитин Василий Тихонович
  • Козьяков Алексей Васильевич
  • Молчанов Владимир Федорович
  • Магсумов Наиль Назипович
  • Саушин Станислав Николаевич
  • Кислицын Алексей Анатольевич
  • Вронский Николай Михайлович
RU2305790C1
РАКЕТНЫЙ ДВИГАТЕЛЬ СМЕСЕВОГО ТВЁРДОГО ТОПЛИВА 2002
  • Аликин В.Н.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Семёнов В.В.
  • Иванов В.Е.
  • Габов А.В.
RU2211351C1
Ракетный двигатель твердого топлива 2019
  • Замарахин Василий Анатольевич
  • Палайчев Андрей Анатольевич
  • Теркин Андрей Евгеньевич
  • Шубкин Евгений Евгеньевич
RU2727116C1
Ракетный двигатель твердого топлива 2021
  • Алферов Александр Александрович
  • Борисов Виктор Николаевич
  • Голубев Михаил Юрьевич
  • Зажорин Виктор Андреевич
  • Измайлова Екатерина Юрьевна
  • Лемешенков Павел Семенович
  • Мухамедов Виктор Сатарович
  • Петрусев Виктор Иванович
  • Шавырин Алик Иванович
  • Шанаев Владимир Афанасьевич
RU2771220C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2008
  • Куценко Геннадий Васильевич
  • Амарантов Георгий Николаевич
  • Баранов Генрих Николаевич
  • Гусева Галина Николаевна
  • Самохин Владимир Степанович
  • Шамраев Виктор Яковлевич
  • Мельниченко Михаил Васильевич
  • Меринова Людмила Васильевна
  • Раимов Ринат Хамидович
  • Саушин Станислав Николаевич
  • Степанов Петр Иванович
  • Ярмолюк Владимир Николаевич
  • Бельских Алексей Иванович
  • Иванов Олег Михайлович
  • Гуреев Владимир Валентинович
RU2389895C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ПОДАЧИ ЗАРЯДА РАЗМИНИРОВАНИЯ 2018
  • Байков Виктор Викторович
  • Гусев Сергей Алексеевич
  • Дамаскин Виктор Николаевич
  • Землевский Александр Владимирович
  • Желтов Дмитрий Валерианович
  • Кириллов Антон Викторович
  • Ковалев Виктор Николаевич
  • Коренко Вячеслав Олегович
  • Купцов Владимир Владимирович
  • Логвин Олег Игоревич
  • Милёхин Юрий Михайлович
  • Ноговицын Александр Анатольевич
  • Положай Юрий Владимирович
  • Сёмин Александр Сергеевич
  • Соломатин Пётр Кириллович
  • Эйхенвальд Валерий Наумович
RU2711328C1
Способ повышения дальности полета активно-реактивного снаряда 2017
  • Архипов Владимир Афанасьевич
  • Бондарчук Сергей Сергеевич
  • Коноваленко Алексей Иванович
  • Перфильева Ксения Григорьевна
RU2647256C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА ДЛЯ УВОДА ОТДЕЛЯЕМЫХ ЧАСТЕЙ РАКЕТЫ 2012
  • Мухамедов Виктор Сатарович
  • Воронцов Петр Глебович
  • Поляков Владимир Анатольевич
  • Бобович Александр Борисович
RU2513052C2
Двухсопловой ракетный двигатель твердого топлива (РДТТ) с многошашечным зарядом 2022
  • Борисов Виктор Николаевич
  • Голубев Михаил Юрьевич
  • Красильников Денис Владимирович
  • Кузьмин Николай Евгеньевич
RU2805347C1

Иллюстрации к изобретению RU 2 344 309 C1

Реферат патента 2009 года РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА

Изобретение относится к ракетным двигателям твердого топлива. Ракетный двигатель твердого топлива содержит корпус, воспламенитель, сопловое днище с множеством сопел, расположенных по окружности, и прочно скрепленный с корпусом канальный заряд твердого топлива. Заряд имеет канал, переходящий в щелевую часть с множеством щелевых прорезей, каждая из которых обращена к сопловому днищу и выполнена с расширяющимся к торцу заряда участком. Длина расширяющегося участка составляет 1,5-1,7 от диаметра критического сечения сопла, а ширина этого участка на торце заряда составляет 0,9-1,1 от диаметра критического сечения сопла. Количество щелевых прорезей равняется количеству сопел, оси которых расположены в плоскостях симметрии щелевых прорезей, проходящих через ось ракетного двигателя. Изобретение позволяет повысить эффективность ракетного двигателя твердого топлива за счет повышения надежности и увеличения его максимального импульса для увеличения дальности полета ракеты. 2 ил.

Формула изобретения RU 2 344 309 C1

Ракетный двигатель твердого топлива, содержащий корпус, воспламенитель, сопловое днище с множеством сопел, расположенных по окружности, прочно скрепленный с корпусом канальный заряд твердого топлива, отличающийся тем, что заряд имеет канал, переходящий в щелевую часть с множеством щелевых прорезей, каждая из которых обращена к сопловому днищу и выполнена с расширяющимся к торцу заряда участком, длина которого составляет 1,5-1,7 от диаметра критического сечения сопла, а ширина участка на торце заряда составляет 0,9-1,1 от диаметра критического сечения сопла, при этом количество щелевых прорезей равняется количеству сопел, оси которых расположены в плоскостях симметрии щелевых прорезей, проходящих через ось ракетного двигателя.

Документы, цитированные в отчете о поиске Патент 2009 года RU2344309C1

US 3180086 А, 27.04.1965
US 3646597 A, 29.02.1972
US 3026772 A, 27.03.1962
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1999
  • Денежкин Г.А.
  • Каретников Г.В.
  • Каширкин А.А.
  • Куксенко А.Ф.
  • Макаровец Н.А.
  • Манеров Н.И.
  • Носов Л.С.
  • Подчуфаров В.И.
  • Семилет В.В.
  • Сопиков Д.В.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
  • Колесников В.И.
  • Талалаев А.П.
  • Вронский Н.М.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
RU2152529C1
ГОРЯЧЕКАТАНЫЙ СТАЛЬНОЙ ЛИСТ ДЛЯ ПРОКАТАННОЙ ЗАГОТОВКИ ПЕРЕМЕННОЙ ТОЛЩИНЫ, ПРОКАТАННАЯ ЗАГОТОВКА ПЕРЕМЕННОЙ ТОЛЩИНЫ И СПОСОБЫ ДЛЯ ИХ ПРОИЗВОДСТВА 2015
  • Йокои, Тацуо
  • Сакурада, Эйсаку
  • Сугиура, Нацуко
  • Фукуи, Киеюки
RU2661692C2
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1993
  • Глухарев Н.Н.
  • Михайлин Л.Н.
  • Алешичев И.А.
  • Корнеичев В.В.
RU2056519C1

RU 2 344 309 C1

Авторы

Куценко Геннадий Васильевич

Колесников Виталий Иванович

Амарантов Георгий Николаевич

Гусева Галина Николаевна

Лазебный Валерий Николаевич

Дмитриев Анатолий Федорович

Шамраев Виктор Яковлевич

Раимов Ринат Хамидович

Саушин Станислав Николаевич

Степанов Виталий Арсеньевич

Мансуров Ильдар Рахимович

Горин Юрий Павлович

Ярмолюк Владимир Николаевич

Яковлев Николай Николаевич

Хомяков Игорь Борисович

Даты

2009-01-20Публикация

2007-04-09Подача