ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО КОСМИЧЕСКОГО АППАРАТА Российский патент 2009 года по МПК B64G1/50 F28D15/04 

Описание патента на изобретение RU2346862C2

Изобретение относится к космической технике, в частности к системам обеспечения требуемого теплового режима телекоммуникационных спутников, и создано авторами в порядке выполнения служебного задания.

Известны теплопередающие устройства, описанные в авторском свидетельстве СССР №823811 [1] и в патенте США №6227288 [2]. В этих устройствах избыточное тепло от работающих приборов подводится к испарителю, к торцу корпуса которого непосредственно прикреплен корпус гидроаккумулятора.

В испарителях известных устройств происходит вскипание (испарение) низкокипящего теплоносителя (например, аммиака) и поглощение избыточного тепла. При этом пары теплоносителя в результате наличия напора капиллярного насоса испарителя движутся в каналы конденсатора, встроенного в конструкцию радиатора. Там они превращаются в жидкую фазу с выделением избыточного тепла, которое передается конструкции радиатора и излучается с его поверхности в космическое пространство. После этого жидкая фаза теплоносителя в результате наличия напора капиллярного насоса подается на вход его и пропитывает капиллярную структуру капиллярного насоса испарителя.

При работе устройства требуемая рабочая температура прибора определяет температуру кипения (испарения) теплоносителя в испарителе, в свою очередь определяющую давление паров теплоносителя на входе в капиллярный насос и, следовательно, давление в парогазовой зоне гидроаккумулятора. В известном устройстве [2] гидроаккумулятор гидравлически и в тепловом отношении непосредственно связан с испарителем и в начальный момент эксплуатации устройства в космическом пространстве давление паров в гидроаккумуляторе в результате соответствующей тепловой связи гидроаккумулятора с испарителем таково, что согласуется с требуемой рабочей температурой прибора.

Однако в процессе работы устройства в условиях космического пространства под воздействием ионизирующего излучения теплоноситель частично изменяет свою химическую структуру с выделением неконденсирующегося газа (например, водорода), который в известных устройствах постепенно накапливается в гидроаккумуляторе, в результате чего давление парогазовой смеси в гидроаккумуляторе будет повышаться и, следовательно, будет повышаться давление на входе в испаритель и температура испарения теплоносителя, обуславливающая возрастание температуры прибора выше требуемой рабочей температуры при выделении им избыточного тепла той же величины, что и было в начале эксплуатации (т.е. для использования известного устройства на начальном этапе эксплуатации температура прибора должна поддерживаться ниже требуемой рабочей температуры - это означает, что должен быть предусмотрен радиатор с увеличенной площадью с соответствующим повышением массы устройства).

Кроме того, возрастание температуры испарения (кипения) в испарителе само по себе дополнительно увеличивает давление парциальных паров теплоносителя в парогазовой зоне гидроаккумулятора и, следовательно, на входе в капиллярный насос испарителя.

Таким образом, общим существенным недостатком известных устройств является постепенное с течением времени постоянное возрастание температуры прибора до предельной рабочей температуры и выше в результате постепенного во времени постоянного возрастания давления парогазовой смеси в полости гидроаккумулятора в условиях эксплуатации космического пространства. Кроме того, в известных устройствах конденсация поступающих из испарителя в полость гидроаккумулятора паров теплоносителя и концентрация выделившихся неконденсирующих газов осуществляется в капиллярной системе - в системе фитилей сложной конструкции.

Анализ источников информации по патентной и научно-технической литературе показал, что наиболее близким по технической сути прототипом предлагаемого технического решения является теплопередающее устройство на основе патента США №6227288.

Теплопередающее устройство на основе известного патента представляет собой замкнутый двухфазный контур (см. фиг.2), заправленный низкокипящим теплоносителем - аммиаком, и включает в себя следующие элементы:

- соединительные трубопроводы 1;

- конденсатор 2, имеющий внутри канал с гладкими стенками, встроенный в конструкцию панели радиатора 3;

- гидроаккумулятор 4, во внутренней полости которого установлена капиллярная система (фитили) 4.1;

- испаритель 5, имеющий тепловую связь с термостатируемой поверхностью прибора 6; внутри испарителя 5 установлен капиллярный насос 5.1, выполненный из основной капиллярной структуры (например, из пористого никеля), соприкасающейся внутри ее центральной зоны с идущей из полости гидроаккумулятора 4 концентрической вспомогательной капиллярной структурой 5.2; вблизи внутренней поверхности вспомогательной капиллярной структуры 5.2 с зазором между ней и торцевой поверхностью основной капиллярной структуры 5.1 расположена концевая часть трубопровода 1.1 подачи жидкой фазы из конденсатора 2 в испаритель 5 через гидроаккумулятор 4, корпус 4.2 которого непосредственно соединен с корпусом 5.3 испарителя 5.

В процессе функционирования устройства в космическом пространстве образующиеся в результате стока тепла через капиллярный насос 5.1 пары теплоносителя и выделившиеся при этом неконденсирующие газы по вышеуказанному зазору транспортируются в полость гидроаккумулятора 4, где пары теплоносителя конденсируются, а неконденсирующиеся газы постепенно с течением эксплуатации превращаются в газовые пузыри; движение парогазовых пузырей из зазора в полость гидроаккумулятора 4 обусловлено тем, что температура и давление теплоносителя в вышеуказанном зазоре всегда несколько выше температуры и давления в парогазовой зоне полости гидроаккумулятора 4.

Как показано выше, существенными недостатками вышеуказанного известного устройства являются постепенное с течением времени постоянное возрастание температуры термостатируемой поверхности (температуры прибора) до предельной рабочей температуры и выше в результате постепенного во времени постоянного возрастания давления парогазовой смеси в полости гидроаккумулятора в условиях эксплуатации космического пространства, а также сложность конструкции капиллярной системы - системы фитилей, расположенных в полости гидроаккумулятора.

Целью предлагаемого авторами технического решения является устранение вышеперечисленных существенных недостатков.

Поставленная цель достигается выполнением теплопередающего устройства таким образом, что корпус гидроаккумулятора соединен с корпусом испарителя через переходник заранее определенной длины, а внутренний объем гидроаккумулятора в зоне между вспомогательной капиллярной структурой и его внутренней поверхностью, расположенной ближе к испарителю, и вблизи остальной его внутренней поверхности снабжен фитилем с более мелкими ячейками, чем фитиль в остальной зоне, в которой расположена часть трубопровода подачи жидкого теплоносителя из конденсатора в испаритель, выполненная в виде спирали, а на наружной поверхности корпуса гидроаккумулятора, расположенной ближе к испарителю, установлен электрообогреватель переменной мощности, что и является по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом теплопередающем устройстве.

Предлагаемое теплопередающее устройство (см. фиг.1, где изображена его принципиальная схема) включает в себя следующие элементы:

- соединительные трубопроводы 1, выполненные с разным проходным сечением: например, от конденсатора до испарителя внутренний диаметр равен 3 мм, а от испарителя до входа в конденсатор внутренний диаметр - 5 мм;

- конденсатор 2, встроенный в конструкцию панели радиатора 3; каналы конденсатора выполнены, например, с гладкими стенками и имеют внутренний диаметр 3 мм;

- гидроаккумулятор 4; выполнен в виде цилиндрической емкости; во внутренней полости гидроаккумулятора 4 установлена капиллярная система - система фитилей с разными ячейками: в зоне между вспомогательной капиллярной структурой 5.2 и внутренней поверхностью гидроаккумулятора 4, расположенной ближе к испарителю 5, и вблизи остальной его внутренней поверхности снабжен фитилем 4.3 с более мелкими ячейками, чем фитиль 4.4 в остальной зоне, в которой расположена часть трубопровода 1.1 подачи жидкой фазы из конденсатора в испаритель, выполненного в виде спирали 1.1.1;

- испаритель 5, имеющий тепловую связь с термостатируемой поверхностью прибора 6; внутри испарителя 5 установлен капиллярный насос 5.1, выполненный из основной капиллярной структуры (например, из пористого никеля), соприкасающейся внутри ее центральной зоны с идущей из полости гидроаккумулятора 4 концентрической вспомогательной капиллярной структурой 5.2; вблизи внутренней поверхности вспомогательной капиллярной структуры 5.2 с зазором между ней и торцевой поверхностью основной капиллярной структуры 5.1 расположена концевая часть трубопровода 1.1 подачи жидкой фазы из конденсатора 2 в испаритель 5 через гидроаккумулятор 4, корпус 4.2 которого соединен с корпусом 5.3 испарителя 5 через вновь введенный переходник 7 заранее определенной длины: длина этого переходника выполнена с таким термическим сопротивлением (с учетом площади поперечного сечения его стенки), что на начальном этапе эксплуатации, когда в полости гидроаккумулятора отсутствуют пузыри неконденсирующегося газа, при максимальной мощности электрообогревателя переменной мощности 8, установленного на наружной поверхности корпуса гидроаккумулятора 4 ближе к испарителю 5 (9 - теплоизоляция), в зоне расположения спирального трубопровода 1.1.1 поддерживается давление паров теплоносителя таким, что обеспечивается работа прибора при требуемой рабочей температуре;

- электрообогреватель переменной мощности 8: в начале эксплуатации включается в работу с максимальной мощностью, а с течением времени по мере накопления неконденсирующихся газов в гидроаккумуляторе 4 его мощность уменьшается, а в конце срока эксплуатации - электрообогреватель 8 обесточен.

Работа предложенного теплопередающего устройства происходит следующим образом. Включаются в работу электрообогреватель 8 устройства на максимальную мощность, а затем через определенное время - прибор 6, установленный на испарителе 5.

Тепло, выделяющееся при работе прибора 6, теплопроводностью передается к корпусу 5.3 испарителя 5, далее - непосредственно к пористой структуре капиллярного насоса 5.1, при этом определенная небольшая часть тепла передается через переходник 7 к корпусу 4.2 гидроаккумулятора 4 и фитилю 4.3 с более мелкими ячейками.

В пористой структуре капиллярного насоса 5.1 происходит прогрев теплоносителя - аммиака и испарение его вблизи наружных поверхностей 5.1.1 капиллярного насоса 5.1. В то же время под воздействием теплопритока от испарителя 5 и теплопритока от работающего электрообогревателя 8 происходит испарение теплоносителя, находящегося в гидроаккумуляторе 4, и создается определенное давление паров теплоносителя в зоне расположения фитиля 4.4 с крупными ячейками - в районе расположения спирали 1.1.1 трубопровода подачи жидкой фазы теплоносителя; вышеуказанное давление определяет величину давления теплоносителя на входе в испаритель 5 и, следовательно, температуры испарения теплоносителя на наружных поверхностях капиллярного насоса 5.1: это давление таково, что оно соответствует определенной температуре испарения, согласующейся с рабочей температурой прибора 6.

Испарившиеся с наружных поверхностей 5.1.1 капиллярного насоса 5 пары теплоносителя, воспринявшие избыточное тепло работающего прибора 6, поступают на выход испарителя 5, далее по соединительному трубопроводу-паропроводу 1 - на вход конденсатора 2; и в каналах конденсатора 2 по мере движения к его выходу постепенно - в результате излучения избыточного тепла с поверхности радиатора 3 в космическое пространство (или в окружающее пространство в наземных условиях) - превращаются в жидкую фазу; ближе к выходу теплоноситель полностью превращается в жидкую фазу и на заключительном участке конденсатора 2 происходит требуемое переохлаждение жидкого теплоносителя, необходимое для исключения вскипания теплоносителя в центральной зоне капиллярного насоса 5.1 с целью обеспечения его высоконадежной работы. Далее жидкий теплоноситель по соединительному трубопроводу 1 движется к входу в гидроаккумулятор 4 и подается в концевую часть 1.1 подачи жидкого теплоносителя из конденсатора 2 в испаритель 5 через гидроаккумулятор 4, из которой жидкий теплоноситель поступает в зазор между вспомогательной капиллярной структурой 5.2 и между ней. Поступивший в зазор жидкий теплоноситель движется в сторону гидроаккумулятора 4, одновременно пропитывая вспомогательную капиллярную структуру 5.2 жидким теплоносителем и несколько (но не до кипения) прогревается в результате поглощения стока тепла через основную капиллярную структуру 5.1.

При этом небольшая часть жидкого теплоносителя и выделившиеся пузырьки неконденсировшегося газа, в случае образования - и пары испарившегося теплоносителя, поступают в зону гидроаккумулятора 4, где расположены фитиль 4.4 с крупными ячейками и спираль 1.1.1 трубопровода. В этой зоне в результате теплообмена между парами теплоносителя и с поверхностями элементов фитиля 4.4 с крупными ячейками и поверхностью спирали 1.1.1, имеющей развитую площадь теплообмена, происходит конденсация паров теплоносителя, образование капель жидкости и под воздействием всегда имеющихся на космическом аппарате микровибраций (например, в результате работы приборов системы ориентации, а также функционирования-слежения (поворота) солнечных батарей на Солнце) контакт этих капель с поверхностью фитиля 4.3 с мелкими ячейками и поглощение им этих капель. (В то же время часть жидкой фазы из фитиля 4.3 с мелкими ячейками поступает через вспомогательную капиллярную структуру 5.2 к основной капиллярной структуре 5.1 капиллярного насоса.)

Одновременно с этим происходит концентрация неконденсировавшихся пузырей газа в зоне расположения фильтра 4.4 с крупными ячейками.

С течением эксплуатации космического аппарата давление неконденсировавшихся газов в этой зоне постепенно возрастает и соответственно уменьшают мощность электрообогревателя 8, поддерживая тем самым необходимое давление в полости гидроаккумулятора 4 и практически постоянную рабочую температуру работающего прибора 6.

Как видно из вышеизложенного, в результате выполнения теплопередающего устройства согласно предложенному авторами техническому решению обеспечивается работа устройства со стабильными требуемыми выходными рабочими характеристиками в течение длительного времени (например, 15 лет) эксплуатации в условиях космического пространства, т.е. тем самым достигаются цели изобретения.

В настоящее время предложенное авторами техническое решение отражено в технической документации.

Предложенное авторами теплопередающее устройство в дальнейшем предполагается использовать в перспективных телекоммуникационных спутниках.

Похожие патенты RU2346862C2

название год авторы номер документа
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО СПУТНИКА 2006
  • Бартенев Владимир Афанасьевич
  • Акчурин Владимир Петрович
  • Голованов Юрий Матвеевич
  • Дмитриев Геннадий Валерьевич
  • Дюдин Александр Евгеньевич
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Шилкин Олег Валентинович
  • Двирный Валерий Васильевич
RU2311323C2
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО СПУТНИКА 2006
  • Бартенев Владимир Афанасьевич
  • Акчурин Владимир Петрович
  • Голованов Юрий Матвеевич
  • Дмитриев Геннадий Валерьевич
  • Дюдин Александр Евгеньевич
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Шилкин Олег Валентинович
RU2311322C2
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2007
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Туркенич Роман Петрович
  • Акчурин Владимир Петрович
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Шилкин Олег Валентинович
  • Голованов Юрий Матвеевич
RU2362711C1
Способ передачи тепла и теплопередающее устройство для его осуществления 2017
  • Абиев Руфат Шовкет Оглы
RU2675977C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2007
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Туркенич Роман Петрович
  • Акчурин Владимир Петрович
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Шилкин Олег Валентинович
  • Голованов Юрий Матвеевич
RU2362712C1
СПОСОБ КОМПОНОВКИ КОСМИЧЕСКОГО АППАРАТА 2007
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Близневский Александр Сергеевич
  • Туркенич Роман Петрович
  • Акчурин Владимир Петрович
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Попов Василий Владимирович
  • Юровских Андрей Петрович
  • Синьковский Федор Константинович
  • Шилкин Олег Валентинович
  • Кувакин Константин Леонардович
  • Голованов Юрий Матвеевич
  • Колесников Анатолий Петрович
RU2369537C2
СИСТЕМА ТЕРМОСТАТИРОВАНИЯ ОБОРУДОВАНИЯ КОСМИЧЕСКОГО ОБЪЕКТА 2012
  • Цихоцкий Владислав Михайлович
  • Прохоров Юрий Максимович
  • Елчин Анатолий Петрович
  • Аульченков Александр Владимирович
  • Басов Андрей Александрович
RU2494933C1
УНИВЕРСАЛЬНОЕ ОХЛАЖДАЮЩЕЕ УСТРОЙСТВО ДЛЯ АГРЕГАТОВ С БОЛЬШОЙ ТЕПЛОВОЙ МОЩНОСТЬЮ 2005
  • Егошин Александр Валерьевич
  • Музыря Олег Игоревич
  • Моторин Виктор Николаевич
  • Фролов Александр Михайлович
RU2290584C2
Система терморегулирования на базе двухфазного теплового контура 2017
  • Котляров Евгений Юрьевич
  • Серов Геннадий Павлович
  • Смирнов Федор Юрьевич
  • Тулин Дмитрий Владимирович
  • Казмерчук Павел Владимирович
RU2667249C1
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО 1993
  • Пастухов В.Г.
  • Майданик Ю.Ф.
  • Загар О.В.
  • Голованов Ю.М.
RU2044247C1

Иллюстрации к изобретению RU 2 346 862 C2

Реферат патента 2009 года ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО КОСМИЧЕСКОГО АППАРАТА

Изобретение относится к системам терморегулирования преимущественно телекоммуникационных спутников, использующим контурные тепловые трубы. Согласно изобретению устройство содержит замкнутый двухфазный контур, заправленный низкокипящим теплоносителем. Контур включает в себя сообщенные трубопроводами конденсатор и испаритель. Конденсатор встроен в конструкцию панели радиатора и имеет внутренний канал с гладкими стенками. Испаритель соединен с гидроаккумулятором, имеющим тепловую связь с термостатируемой поверхностью. Внутри испарителя установлен капиллярный насос, выполненный в виде основной капиллярной структуры, соприкасающейся внутри ее центральной зоны с выступающей из гидроаккумулятора концентрической вспомогательной капиллярной структурой. Вблизи внутренней поверхности данной вспомогательной структуры с зазором между ней и торцевой поверхностью основной капиллярной структуры расположена концевая часть трубопровода подачи жидкого теплоносителя из конденсатора в испаритель. Подача осуществляется через гидроаккумулятор, корпус которого с установленной в нем капиллярной системой соединен с корпусом испарителя через переходник. Внутренний объем гидроаккумулятора в зоне вспомогательной капиллярной структуры и вблизи его внутренней поверхности снабжен фитилем с более мелкими ячейками, чем ячейки в остальной зоне. В последней расположена часть трубопровода подачи теплоносителя из конденсатора в испаритель, выполненная в виде спирали. На наружной поверхности гидроаккумулятора, ближе к испарителю, установлен электрообогреватель переменной мощности. Техническим результатом изобретения является стабильность рабочих характеристик устройства в течение длительного времени его эксплуатации (типично, 15 лет) в условиях космического пространства. 2 ил.

Формула изобретения RU 2 346 862 C2

Теплопередающее устройство космического аппарата, содержащее замкнутый двухфазный контур, заправленный низкокипящим теплоносителем и включающий в себя сообщенные между собой трубопроводами конденсатор, имеющий внутренний канал и встроенный в конструкцию панели радиатора, и соединенный с гидроаккумулятором испаритель, имеющий тепловую связь с термостатируемой поверхностью, внутри которого установлен капиллярный насос, выполненный в виде основной капиллярной структуры, соприкасающейся внутри ее центральной зоны с выступающей из гидроаккумулятора концентрической вспомогательной капиллярной структурой, вблизи внутренней поверхности которой с зазором между ней и торцевой поверхностью основной капиллярной структуры расположена концевая часть трубопровода подачи жидкого теплоносителя из конденсатора в испаритель через гидроаккумулятор, внутри корпуса которого установлена капиллярная система и корпус которого соединен с корпусом испарителя, отличающееся тем, что корпус гидроаккумулятора соединен с корпусом испарителя через переходник заранее определенной длины, а внутренний объем гидроаккумулятора в зоне между вспомогательной капиллярной структурой и его внутренней поверхностью, расположенной ближе к испарителю, и вблизи остальной его внутренней поверхности снабжен фитилем с более мелкими ячейками, чем ячейки фитиля в остальной его зоне, в которой расположена выполненная в виде спирали часть трубопровода подачи жидкого теплоносителя из конденсатора в испаритель, а на наружной поверхности корпуса гидроаккумулятора, расположенной ближе к испарителю, установлен электрообогреватель переменной мощности.

Документы, цитированные в отчете о поиске Патент 2009 года RU2346862C2

US 6227288 А, 08.05.2001
US 6810946 А, 02.11.2004
US 7004240 A, 28.02.2006
Испарительная камера тепловойТРубы 1979
  • Герасимов Юрий Федорович
  • Кисеев Валерий Михайлович
  • Майданик Юрий Фольевич
  • Непомнящий Александр Семенович
  • Долгирев Юрий Евгеньевич
SU823811A1
УНИВЕРСАЛЬНОЕ ОХЛАЖДАЮЩЕЕ УСТРОЙСТВО ДЛЯ АГРЕГАТОВ С БОЛЬШОЙ ТЕПЛОВОЙ МОЩНОСТЬЮ 2005
  • Егошин Александр Валерьевич
  • Музыря Олег Игоревич
  • Моторин Виктор Николаевич
  • Фролов Александр Михайлович
RU2290584C2

RU 2 346 862 C2

Авторы

Тестоедов Николай Алексеевич

Косенко Виктор Евгеньевич

Бартенев Владимир Афанасьевич

Кесельман Геннадий Давыдович

Близневский Александр Сергеевич

Халиманович Владимир Иванович

Акчурин Владимир Петрович

Загар Олег Вячеславович

Томчук Альберт Владимирович

Туркенич Роман Петрович

Юровских Андрей Петрович

Шилкин Олег Валентинович

Голованов Юрий Матвеевич

Роскин Сергей Михайлович

Дмитриев Геннадий Валерьевич

Дюдин Александр Евгеньевич

Даты

2009-02-20Публикация

2007-03-05Подача