РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ Российский патент 2009 года по МПК A61B6/00 G21K4/00 H04N5/32 

Описание патента на изобретение RU2352253C1

Предлагаемое изобретение относится к разделу медицинской техники, точнее к цифровым рентгеновским аппаратам сканирующего типа.

Известна малодозовая цифровая рентгеновская установка (МЦРУ) «Сибирь», разработанная в институте ядерной физики им. Г.И.Будкера (Новосибирск) (Белова И.Б., Китаев В.М. Малодозовая цифровая рентгенография. - Орел, 2001 г., с.29). МЦРУ «Сибирь» содержит высоковольтный генератор высокочастотного типа, рентгеновский излучатель с щелевым коллиматором, многоэлементный линейный рентгеновский детектор, соединенный с системой регистрации и воспроизведения изображения, механическое сканирующее устройство, защитную кабину с площадкой для ног пациента. Сканирование пациента выполняется в вертикальном направлении узким горизонтальным веерным рентгеновским пучком.

Известно также радиографическое сканирующее устройство (Международная заявка WO 02/17790 А1 от 07.03.2002), содержащее последовательно расположенные на одной оптической оси источник рентгеновского излучения, щелевой коллиматор и линейный приемник рентгеновского излучения. Приемник и коллиматор закреплены на едином кронштейне, установленном с возможностью вращения вокруг вертикальной оси, проходящей через фокус источника рентгеновского излучения.

В отличие от первого аналога в этом аппарате сканирование пациента производится в горизонтальной плоскости узким вертикальным рентгеновским пучком.

Наиболее близкой по конструкции к заявляемому объекту является рентгенографическая установка для медицинской диагностики (Патент RU 2098929 от 29.05.95 г. А61В 6/00), содержащая высокочастотный рентгеновский генератор, рентгеновский излучатель с щелевым коллиматором, рентгеновский детектор, соединенный с системой регистрации и воспроизведения изображения, механическое сканирующее устройство, защитную кабину с площадкой для ног пациента.

Сканирование пациента производится в вертикальном направлении. Рентгеновское излучение, прошедшее через тело пациента, регистрируется многоэлементным линейным детектором (МЛД). Детектор улавливает сигналы, минимально превышающие порог чувствительности усилителя, благодаря чему фоновое излучение не фиксируется и создается оптимальное соотношение «сигнал-шум». При этом максимально уменьшается радиационная доза на пациента.

Информация, накопленная в МЛД во время экспозиции строки, переписывается в память ЭВМ, и затем начинается регистрация следующей по вертикали строки. Для этой цели рентгеновский излучатель, щелевой коллиматор и МЛД во время съемки одновременно и равномерно перемещаются в вертикальном направлении. Коллиматор с узкой щелью формирует тонкий веерообразный пучок рентгеновского излучения, который после прохождения через тело пациента попадает во входное окно МЛД.

После окончания съемки кадра в памяти компьютера формируется матрица изображения (320×256 чисел), содержащая информацию о распределении излучения после прохождения через тело пациента. Цифровое рентгеновское изображение выводится на видеомонитор компьютера через 5 с после окончания сканирования.

Управление аппаратом осуществляется с помощью ЭВМ.

Программное обеспечение включает в себя основную программу, управляющую аппаратом во время съемки, и программы для контроля работоспособности блоков и аппарата в целом.

Рентгенографическая установка (RU 2098929), выбранная нами в качестве прототипа, так же как и все известные аналоги, предназначена в первую очередь для рентгенологического исследования легких (флюорографии) с целью своевременного выявления туберкулеза и других заболеваний органов грудной полости.

Недостатком прототипа, так же как и всех известных аналогов, является невозможность получения томографического среза в зоне интереса, что затрудняет проведение диагностики и ограничивает эксплуатационные возможности аппарата.

Целью настоящего изобретения является повышение точности диагностики и расширение эксплуатационных возможностей аппарата за счет усовершенствования системы сканирования, а также снижение себестоимости обследования.

Данный медицинский и технический результат достигается тем, что в рентгенографической установке для медицинской диагностики, содержащей последовательно расположенные на одной оптической оси источник рентгеновского излучения, щелевой коллиматор и линейный приемник рентгеновского излучения, закрепленные на несущем кронштейне, соединенном с механическим сканирующим устройством, находящимся с внешней стороны кабины пациента, имеющей основание с площадкой для ног пациента, причем рентгеновский излучатель подключен к высокочастотному рентгеновскому генератору и программируемому блоку управления, снабженному ЭВМ, пультом управления и видеомонитором, а линейный приемник рентгеновского излучения соединен с цифровой электронной системой преобразования, регистрации и формирования изображения, каретка механического сканирующего устройства имеет форму кольца и закреплена посредством подшипников в кольцевой обойме, снабженной механизмом равномерного вращения каретки в пределах от 0° до 360° вокруг вертикальной оси, проходящей через центр кабины пациента и удаленной от фокуса рентгеновского излучателя на величину s=f-d/2, где f - фокусное расстояние, d - расстояние от щели коллиматора до линейного приемника вдоль центрального рентгеновского луча, и выполненной с возможностью перемещения в вертикальном направлении по направляющим, которыми являются три колонны, установленные с интервалом 120° на основании, внутри каждой из которых имеется противовес для уравновешивания каретки, и электродвигатель, кроме того, сканирующее устройство оснащено системой автоматической коррекции горизонтальности каретки, включающей датчик уровня, закрепленный на обойме, и электрическую схему управления работой электродвигателей сканирующего устройства.

В дальнейшем изобретение поясняется чертежами и описанием работы предлагаемого устройства.

На фиг.1 и фиг.2 схематически показана конструкция аппарата, а на фиг.3 - конструкция опорной колонны, вид по В-В фиг.1.

Рентгенографическая установка для медицинской диагностики содержит рентгеновский излучатель 1 моноблочного типа, оптически сопряженный через щелевой коллиматор 2 с линейным приемником (детектором) рентгеновского излучения 3. Рентгеновский излучатель 1, щелевой коллиматор 2 и линейный детектор 3 установлены на каретке 4 кольцеобразной формы, закрепленной посредствам подшипников 5 в кольцевой обойме 6, которая может перемещаться в вертикальном направлении по направляющим, которыми являются три колонны 7, 8, 9, установленные с интервалом 120° на основании 10. Внутри каждой колонны имеется противовес 11 (фиг.3); они соединяются тросом 12 с обоймой 6 и предназначены для уравновешивания массы каретки 4. Основание противовесов 11 соединено тросом 13 с улиткой 14, закрепленной на оси редуцированного электродвигателя 15, предназначенного для равномерного перемещения каретки 4 в вертикальном направлении. Между щелевым коллиматором 2 и рентгеновским детектором 3, внутри каретки 4 находится кабина пациента 16, имеющая цилиндрическую форму и изготовленная из жесткого рентгенопрозрачного и светопрозрачного материала, например оргстекла. Кабина 16 оснащена сдвигающейся дверью 17, предназначенной для входа и выхода пациента Р. При входе и выходе пациента Р каретка 4 поднята на максимально возможную высоту и не мешает свободному проходу пациента.

Каретка 4 может равномерно вращаться вокруг кабины пациента 16 в обойме 6 в пределах от 0° до 360° при работе редуцированного электродвигателя 18. Вращение каретки 4 осуществляется вокруг вертикальной оси, проходящей через центр кабины пациента и удаленной от фокуса рентгеновского излучателя на величину , где f - фокусное расстояние, d - расстояние от щели коллиматора до линейного приемника вдоль центрального рентгеновского луча. Уравнение (1) получено с учетом качественных критериев формирования рентгеновского изображения и обеспечивает оптимальные условия получения поперечного томографического изображения при положении пациента Р в центре кабины 16.

Управление работой аппарата осуществляется с помощью программируемого пульта управления 19, включающего ЭВМ 20, пульт управления 21, например, в виде клавиатуры, и видеомонитор 22. К программируемому блоку управления 19 подключены рентгеновский излучатель 1, электродвигатель 15 вертикальной сканирующей системы и электродвигатель 18 горизонтальной каретки 4. Линейный детектор 3 соединен с цифровой электронной системой преобразования, регистрации и воспроизведения цифрового изображения 23, подключенной к программируемому пульту управления 19.

Рентгенографическая установка содержит систему вывода сканирующего устройства на уровень томографического среза, включающую координатометр 24, механически соединенный с электродвигателем 15 сканирующего устройства, а электрически через ЭВМ 20 с видеомонитором 22.

Точность и безопасность рентгенографии в сканирующих установках во многом зависит от строгости положения ее механических элементов, поэтому предлагаемая нами конструкция была оснащена системой автоматической коррекции горизонтальности каретки 4, включающей датчик уровня 25, закрепленный на обойме 6, и электрическую схему управления работой электродвигателей 15 сканирующего устройства.

Подвод энергии к рентгеновскому излучателю 1, электродвигателю 18 и снятие сигналов с линейного детектора 3 и датчика уровня 25 осуществляется через шлифринг, установленный внутри обоймы 6 (не показан).

Управление аппаратом осуществляется с помощью ЭВМ 20 с программируемого пульта управления 19. Программное обеспечение включает в себя основную управляющую программу, предназначенную для получения стандартного цифрового рентгеновского изображения, тестовую программу для проведения контроля работоспособности блоков и аппарата в целом и дополнительную программу для получения поперечных томографических изображений.

При получение стандартного цифрового рентгеновского изображения распределение излучения в горизонтальном направлении (строка) измеряется с помощью многоэлементного линейного детектора 3. Строки «сшиваются» в кадр путем механического сканирования тела пациента в вертикальном направлении. Для этой цели рентгеновская трубка 1, щелевой коллиматор 2 и детектор 3 во время съемки одновременно и равномерно перемещаются в вертикальном направлении. Коллиматор 2 с шириной щели от 0,5 до 2,0 мм формирует тонкий веерообразный пучок V рентгеновского излучения, который после прохождения через тело пациента Р попадает во входное окно линейного детектора 3. Информация, накопленная в приемниках многоэлементного линейного детектора 3 во время экспозиции строки, после преобразования в блоке 23, переписывается в память ЭВМ 20, после чего начинается регистрация следующей по вертикали строки. После окончания съемки кадра в памяти накапливается цифровое изображение-матрица чисел, описывающая распределение изображения после прохождения через тело пациента.

Первое необработанное изображение на видеомониторе 22 возникает одновременно со сканированием. На экране видеомонитора отображается рентгеновское изображение внутренних органов пациента, например легких, и координатная шкала, позволяющая определить положение того или иного структурного элемента организма по высоте (в системе координат аппарата).

При анализе цифрового рентгеновского изображения пациент Р продолжает находиться в кабине 16. В случае обнаружения патологического образования, например туберкулезной каверны в легком, врач-рентгенолог наводит «плавающую марку» видеомонитора 21 на целевую точку изображения и нажимает соответствующую кнопку на клавиатуре 21 видеомонитора 22. При этом, во-первых, на программируемом пульте управления 19 включается дополнительная программа получения поперечного томографического среза, и, во-вторых, сигнал через ЭВМ 20 и координатометр 24 поступает на электродвигатели 15 сканирующей системы, в результате чего рентгеновский излучатель 1 щелевой коллиматор 2 и детектор 3 выводятся на уровень томографического среза. Кроме того, включается электродвигатель 18, задающий равномерное вращение каретки 4, например, со скоростью 1 оборот в секунду. Пациенту дается команда «глубокий вдох и не дышать». После чего включается рентгеновский излучатель 1. ЭВМ 20 производит обработку сигнала, приходящего с линейного детектора 3, и формирование матрицы томографического среза, которая выводится на экран видеомонитора 22 для визуального анализа.

Предложенное техническое решение найдет широкое применение в клинической медицине, так как оно значительно увеличивает диагностические возможности цифрового рентгеновского аппарата и заметно снижает стоимость обследования пациента.

Источники информации

1. Белова И.Б., Китаев В.М. Малодозовая цифровая рентгенография. - Орел, 2001 г., с.29.

2. Международная заявка WO 02/17790 А1 от 07.03.2002.

3. Патент RU 2098929 от 29.05.95 г. А61В 6/00 (прототип).

Похожие патенты RU2352253C1

название год авторы номер документа
РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ 2007
  • Мишкинис Борис Янович
  • Мишкинис Александр Борисович
  • Черний Александр Николаевич
RU2352252C1
РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ 2009
  • Мишкинис Александр Борисович
RU2405438C1
РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ 2007
  • Мишкинис Александр Борисович
  • Виноградова Алевтина Николаевна
  • Черний Александр Николаевич
RU2352250C1
РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ 2009
  • Мишкинис Александр Борисович
RU2407439C1
РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ 2007
  • Мишкинис Александр Борисович
  • Виноградова Алевтина Николаевна
  • Черний Александр Николаевич
RU2343836C1
РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ 2009
  • Мишкинис Александр Борисович
RU2407438C1
РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ 2003
  • Черний А.Н.
  • Зеликман М.И.
  • Щетинин В.В.
RU2233117C1
РЕНТГЕНОВСКИЙ ЩЕЛЕВОЙ КОЛЛИМАТОР 2002
  • Щетинин В.В.
  • Черний А.Н.
RU2230390C1
ЦИФРОВОЙ СКАНИРУЮЩИЙ РЕНТГЕНОДИАГНОСТИЧЕСКИЙ АППАРАТ 2002
  • Щетинин В.В.
  • Черний А.Н.
RU2217055C1
ДИАГНОСТИЧЕСКИЙ РЕНТГЕНОГРАФИЧЕСКИЙ СКАНИРУЮЩИЙ ЦИФРОВОЙ АППАРАТ 2006
  • Бехтерев Алексей Владимирович
  • Куроченко Андрей Егорович
  • Попов Владимир Иванович
  • Путьмаков Анатолий Николаевич
RU2328217C2

Реферат патента 2009 года РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ

Изобретение относится к медицинской технике. Установка содержит последовательно расположенные на одной оптической оси источник рентгеновского излучения, щелевой коллиматор и линейный детектор рентгеновского излучения, закрепленные на каретке механического сканирующего устройства, расположенного с внешней стороны кабины пациента. Источник рентгеновского излучения подключен к программируемому блоку управления, снабженному ЭВМ, пультом управления и видеомонитором, а линейный детектор соединен с цифровой электронной системой преобразования, регистрации и формирования изображения. Каретка механического сканирующего устройства имеет форму кольца, закреплена посредством подшипников в кольцевой обойме, снабженной механизмом равномерного вращения каретки в пределах от 0° до 360° вокруг вертикальной оси, проходящей через центр кабины пациента и удаленной от фокуса рентгеновского излучателя на величину s=f-d/2, где f - фокусное расстояние, d - расстояние от щели коллиматора до линейного детектора вдоль центрального рентгеновского луча, и выполнена с возможностью перемещения в вертикальном направлении по направляющим, которыми являются три колонны, установленные с интервалом 120° на основании. Внутри каждой из колонн имеется противовес для уравновешивания каретки и электродвигатель. Сканирующее устройство оснащено системой автоматической коррекции горизонтальности каретки, включающей датчик уровня, закрепленный на обойме, и электрическую схему управления работой электродвигателей сканирующего устройства. Применение данной установки позволит расширить эксплуатационные возможности рентгенографической установки за счет усовершенствования системы сканирования, а также повысить точность рентгенодиагностики и снизить себестоимость обследования. 3 ил.

Формула изобретения RU 2 352 253 C1

Рентгенографическая установка для медицинской диагностики, содержащая последовательно расположенные на одной оптической оси источник рентгеновского излучения, щелевой коллиматор и линейный детектор рентгеновского излучения, закрепленные на каретке механического сканирующего устройства, расположенного с внешней стороны кабины пациента, причем источник рентгеновского излучения подключен к программируемому блоку управления, снабженному ЭВМ, пультом управления и видеомонитором, а линейный детектор соединен с цифровой электронной системой преобразования, регистрации и формирования изображения, отличающаяся тем, что каретка механического сканирующего устройства имеет форму кольца, закреплена посредством подшипников в кольцевой обойме, снабженной механизмом равномерного вращения каретки в пределах от 0° до 360° вокруг вертикальной оси, проходящей через центр кабины пациента и удаленной от фокуса рентгеновского излучателя на величину s=f-d/2, где f - фокусное расстояние, d - расстояние от щели коллиматора до линейного детектора вдоль центрального рентгеновского луча, и выполнена с возможностью перемещения в вертикальном направлении по направляющим, которыми являются три колонны, установленные с интервалом 120° на основании, внутри каждой, из которых имеется противовес для уравновешивания каретки и электродвигатель, кроме того, сканирующее устройство оснащено системой автоматической коррекции горизонтальности каретки, включающей датчик уровня, закрепленный на обойме, и электрическую схему управления работой электродвигателей сканирующего устройства.

Документы, цитированные в отчете о поиске Патент 2009 года RU2352253C1

РЕНТГЕНОГРАФИЧЕСКАЯ УСТАНОВКА ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ 1995
  • Аветисян Г.Х.
  • Еркин А.К.
  • Котов В.П.
  • Куликов В.Б.
  • Трубников В.М.
  • Кузнецов Ю.А.
RU2098929C1
РЕНТГЕНОВСКИЙ СТОЛ-ШТАТИВ ПОВОРОТНЫЙ 2000
  • Лазаков В.Н.
  • Таргоня Н.М.
  • Девяткин С.Л.
  • Новиков Г.В.
  • Бекешев О.С.
RU2202953C2
US 6031892, 29.02.2000
US 5848123, 08.12.1998
ВЫСОКОПРОЧНАЯ СТАЛЬНАЯ ПЛАСТИНА ДЛЯ КИСЛОТОСТОЙКОГО ТРУБОПРОВОДА И СПОСОБ ПОЛУЧЕНИЯ СТАЛЬНОЙ ПЛАСТИНЫ, ВЫСОКОПРОЧНАЯ СТАЛЬНАЯ ТРУБА, В КОТОРОЙ ИСПОЛЬЗУЕТСЯ ВЫСОКОПРОЧНАЯ СТАЛЬНАЯ ПЛАСТИНА ДЛЯ КИСЛОТОСТОЙКОГО ТРУБОПРОВОДА 2019
  • Симамура Дзундзи
  • Томоюки
  • Уэока Сатоси
  • Исикава Нобуюки
RU2767261C1
Е.В.ВИНОГРАДОВ и др
Микродозовая флюорография
Современная рентгенография
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора 1921
  • Андреев Н.Н.
  • Ландсберг Г.С.
SU19A1
Найдено в Интернет www.fluro.ukrbiz.net/
Ю.Г.УКРАИНЦЕВ Сканирующий метод получения рентгеновских изображений на цифровом аппарате

RU 2 352 253 C1

Авторы

Мишкинис Борис Янович

Мишкинис Александр Борисович

Черний Александр Николаевич

Даты

2009-04-20Публикация

2007-10-30Подача