ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ Российский патент 2009 года по МПК H01L35/28 

Описание патента на изобретение RU2357330C1

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ).

Прототипом изобретения является ТЭБ, описанная в [1]. ТЭБ состоит из последовательно соединенных в электрическую цепь полупроводниковых термоэлементов, каждый из которых образован двумя ветвями (столбиками, выполненными либо цилиндрическими, либо в виде прямоугольного параллелепипеда), изготовленными из полупроводника соответственно p- и n-типа. Ветви термоэлементов соединяются между собой посредством коммутационных пластин, причем ветви p-типа и n-типа контактируют торцевыми поверхностями соответственно с двумя противоположными поверхностями коммутационной пластины. Коммутационные пластины имеют несколько большую площадь, чем площадь поперечного сечения ветвей, вследствие чего они выступают за поверхность структуры, образованной ветвями ТЭБ, причем нечетные коммутационные пластины выступают за одну поверхность структуры, а четные коммутационные пластины - за другую. Соответственно отвод и подвод теплоты осуществляется с выступающих частей коммутационных пластин за счет воздушного или жидкостного теплообмена.

Недостатком известной конструкции является отвод (подвод) теплоты только с поверхности выступающих частей коммутационных пластин, тогда как вследствие теплопроводности имеет место также нагрев (охлаждение) близлежащих к ним областей ветвей термоэлементов.

Целью изобретения является повышение эффективности отвода (подвода) теплоты с горячих (холодных) контактов ТЭБ за счет отвода (подвода) теплоты также и с близлежащих к ним областей ветвей термоэлементов.

Цель достигается тем, что поверхность структуры, образованной ветвями ТЭБ, за исключением областей, близлежащих к выступающим частям коммутационных пластин, покрыта слоем теплоизоляционного диэлектрического материала. Площадь, не покрытая слоем теплоизоляционного диэлектрического материала, определяется произведением толщины ветви термоэлемента на ее высоты. При этом съем теплоты с коммутационных пластин, а также с близлежащих к ним областей осуществляется за счет испарения теплоносителя, реализуемого соответствующими испарительными системами.

Конструкция термоэлектрической батареи приведена на фиг.1-2. ТЭБ состоит из последовательно соединенных в электрическую цепь посредством коммутационных пластин 1 и 2 чередующихся ветвей, изготовленных соответственно из полупроводника p-типа 3 и n-типа 4. Электрическое соединение ветвей осуществляют посредством контакта ветвь p-типа 3 - коммутационная пластина 1 или 2 - ветвь n-типа 4, где ветвь p-типа 3 контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа 4 - с другой. Каждая ветвь в ТЭБ контактирует противоположными торцевыми поверхностями с двумя коммутационными пластинами 1 и 2. Коммутационные пластины 1 и 2 имеют площадь, несколько большую, чем площадь поперечного сечения ветвей p- и n-типа 3 и 4, вследствие чего их концы выступают за поверхность структуры, образованной ветвями ТЭБ. Концы нечетных коммутационных пластин 1 выступают за одну поверхность структуры, а концы четных коммутационных пластин 2 - за другую.

Поверхность структуры, образованной ветвями ТЭБ, за исключением областей, близлежащих к выступающим частям коммутационных пластин 1 и 2, покрыта слоем теплоизоляционного диэлектрического материала 5. Площадь, не покрытая слоем теплоизоляционного диэлектрического материала 5, определяется произведением толщины ветви термоэлемента на ее высоты. Съем теплоты с коммутационных пластин, а также с близлежащих к ним областей осуществляется за счет испарения теплоносителя, реализуемого соответствующими испарительными системами 6.

ТЭБ функционирует следующим образом.

При прохождении через ТЭБ постоянного электрического тока, подаваемого от источника электрической энергии, между коммутационными пластинами 1 и 2, представляющими собой контакты ветвей p- и n-типа 3 и 4, возникает разность температур, обусловленная выделением и поглощением теплоты Пельтье. При указанной на фиг.1 полярности электрического тока происходит нагрев нечетных коммутационных пластин 1 и охлаждение четных 2. Съем теплоты с коммутационных пластин 1 и 2, а также с близлежащих к ним областей осуществляется за счет испарения теплоносителя, реализуемого соответствующими испарительными системами 6. Повышение эффективности отвода теплоты с горячих и холодных контактов ТЭБ осуществляется за счет ее съема также и с близлежащих к коммутационным пластинам областей поверхности структуры, образованной ветвями ТЭБ. При этом теплоизоляция 5 служит для уменьшения теплопритока из окружающей среды.

Литература

1. Поздняков Б.С., Коптелов Е.А. Термоэлектрическая энергетика. М.: Атомиздат, 1974.

Похожие патенты RU2357330C1

название год авторы номер документа
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Хазамова Мадина Абдулаевна
  • Рагимова Тамила Арслановна
RU2379793C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Хазамова Мадина Абдулаевна
  • Исабекова Тамила Иллахидиновна
RU2379792C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2009
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Евдулов Денис Викторович
RU2417484C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2357328C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2357327C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2009
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
RU2407111C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Махмудова Марьям Магомедовна
  • Евдулов Денис Викторович
RU2380789C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2009
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
RU2419181C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Хазамова Мадина Абдулаевна
  • Исабекова Тамила Иллахидиновна
RU2380788C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Агаев Магомед Улубиевич
  • Евдулов Денис Викторович
RU2379791C1

Реферат патента 2009 года ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ). В устройстве поверхность структуры, образованной ветвями ТЭБ, за исключением областей, близлежащих к выступающим частям коммутационных пластин, покрыта слоем теплоизоляционного диэлектрического материала. Площадь, не покрытая слоем теплоизоляционного диэлектрического материала, определяется произведением толщины ветви термоэлемента на ее высоты. При этом съем теплоты с коммутационных пластин, а также с близлежащих к ним областей осуществляется за счет испарения теплоносителя, реализуемого соответствующими испарительными системами. Технический результат - повышение эффективности отвода (подвода) теплоты с горячих (холодных) контактов ТЭБ за счет отвода (подвода) теплоты также и с близлежащих к ним областей ветвей термоэлементов. 2 ил.

Формула изобретения RU 2 357 330 C1

Термоэлектрическая батарея, состоящая из последовательно соединенных в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно p- и n-типа, причем ветви p-типа и n-типа контактируют торцевыми поверхностями соответственно с двумя противоположными поверхностями коммутационной пластины, коммутационные пластины имеют несколько большую площадь, чем площадь поперечного сечения ветвей, вследствие чего они выступают за поверхность структуры, образованной ветвями термоэлектрической батареи, отличающаяся тем, что поверхность структуры, образованной ветвями ТЭБ, за исключением областей, близлежащих к выступающим частям коммутационных пластин, покрыта слоем теплоизоляционного диэлектрического материала, а площадь, не покрытая слоем теплоизоляционного диэлектрического материала, определяется произведением толщины ветви термоэлемента на ее высоты, при этом съем теплоты с коммутационных пластин, а также с близлежащих к ним областей осуществляется за счет испарения теплоносителя, реализуемого соответствующими испарительными системами.

Документы, цитированные в отчете о поиске Патент 2009 года RU2357330C1

ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2005
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2312428C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2003
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
  • Меркухин Николай Евгеньевич
RU2269184C2
СПОСОБ ОБЕСПЕЧЕНИЯ ФУНКЦИОНИРОВАНИЯ ТЕРМОЭЛЕКТРИЧЕСКОЙ БАТАРЕИ 2003
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2270495C2
Поздняков Б.С., Коптелов Е.А
Термоэлектрическая энергетика
- М.: Атомиздат, 1974.

RU 2 357 330 C1

Авторы

Исмаилов Тагир Абдурашидович

Вердиев Микаил Гаджимагомедович

Евдулов Олег Викторович

Даты

2009-05-27Публикация

2008-01-18Подача