СПОСОБ ПРЕОБРАЗОВАНИЯ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА В ЭЛЕКТРИЧЕСКУЮ ЭНЕРГИЮ Российский патент 2009 года по МПК H05F7/00 

Описание патента на изобретение RU2366121C1

Изобретение относится к области использования природных источников электричества, присутствующего в атмосфере, и может быть использовано в любой точке земли.

Известен способ преобразования атмосферного электричества, при котором атмосферное электричество через приемный блок, расположенный в воздушном пространстве, передают на разрядный элемент, выполненный в виде электродов (см., например, патент РФ №2030132, МПК 6 H05F 7/00, опубл. 27.02.1996 г. в Б.И №6).

Недостаток известного способа заключается в том, что возникающие при преобразовании напряжения могут достигать больших величин, что сопряжено с опасностью для жизни. При этом для реализации полученной электроэнергии с большими напряжениями потребуются специальные приемники, эффективность которых невелика.

Более близким по технической сущности и принятым за прототип является способ преобразования атмосферного электричества в электрическую энергию, заключающийся в том, что атмосферное электричество от установленного на лебедке летательного аппарат передают через проводящий канал в емкостный накопитель электроэнергии с помощью электрического выпрямителя (см., например, патент РФ №2293451, МПК H05F 7/00 "Способ аккумулирования атмосферной электроэнергии", опубл. 10.02.2007 г. в Б.И №4).

Известный способ позволяет оптимизировать положение устройства приема атмосферного электричества в пространстве.

Известный способ и основанные на нем устройства имеют следующие недостатки.

1. Для использования накопленной в конденсаторах электроэнергии требуется специальный и дорогостоящий высоковольтный преобразователь.

2. Используемые в накопителях высоковольтные конденсаторы имеют высокую цену и ненадежны.

3. Высоковольтный накопитель имеет ограничение по напряжению и при высоких атмосферных напряжениях излишек атмосферной энергии приходится бесполезно проводить в землю через высоковольтный разрядник.

Задачей изобретения является:

1. Создание способа для приема атмосферного электричества, при котором получаемая электроэнергия используется более полно и поступает непосредственно в промышленную сеть или потребителю со стандартным напряжением.

2. Сокращение количества используемых в накопителе конденсаторов и снижение их номинального напряжения.

3. Повышение КПД преобразования атмосферной энергии в промышленную.

Указанная задача решается за счет того, что в способе преобразования атмосферного электричества, при котором его фиксируют в накопителе, согласно изобретению, по мере накопления электричества до определенной величины его с помощью электрогидравлических разрядников последовательно преобразуют в энергию пневматической системы с повышенным давлением и при достижении определенного давления энергию пневмосистемы с помощью ветрогенератора преобразуют в электроэнергию.

Преобразование электричества по мере его накопления до определенной величины в энергию пневматической системы с повышенным давлением и при достижении определенного давления преобразование энергии пневмосистемы с помощью ветрогенератора в электроэнергию позволит обеспечить практически полную утилизацию атмосферного электричества со стандартным напряжением, соответствующим напряжению промышленной сети.

Заявленное изобретение иллюстрируется 5-ю фигурами.

На фиг.1 представлена принципиальная электрическая схема устройства преобразования атмосферного электричества.

На фиг.2 показана принципиальная конструкция электрогидравлического разрядника.

На фиг.3 изображена схема расположение датчиков положения штока электрогидравлического разрядника.

На фиг.4 - принципиальная электрическая схема включения блокировочных реле.

Фиг.5 демонстрирует пневматический накопитель и преобразователь высокого давления в электроэнергию.

Устройство для преобразования атмосферного электричества в электрическую энергию выполнено следующим образом. Через проводящий канал - электропровод 1 (фиг.1) атмосферное электричество от аэростата (не показан) подводится к приемному высоковольтному конденсатору 2. К зажимам конденсатора подсоединена цепь, состоящая из разрядника 3, последовательно с которым включено несколько параллельно соединенных электрогидравлических разрядников 4. В цепи каждого разрядника имеется нормально открытый контакт 5 блокировочного реле. Электрогидравлический разрядник состоит из цилиндра 6 (фиг.2), расположенного вертикально. Он разделен поршнем 7 на две камеры. Камера 8, расположена ниже поршня 7. Полость нижней камеры частично заполнена водой 9. В воду помещены электроды 10, разделенные промежутком. Нижняя камера с помощью гибкого шланга 11 соединена с резервуаром (не показан), заполненным водой. Верхняя камера 12 цилиндра 6 имеет крышку 13, которая соединена шлангом 14 с источником газа (не показан). Шланг 14 снабжен обратным клапаном 15, который препятствует выходу газа из верхней камеры к источнику газа. В крышке 13 выполнено отверстие 16 с сальником, через которое проходит шток 17 поршня 7. Поршень снабжен пружиной сжатия 18, расположенной вдоль штока между крышкой 11 и верхней поверхностью поршня. В крышке 11 имеется также отверстие 19, которое шлангом 20 соединено с общим тубопроводом (не показан). В шланге 20 имеется обратный клапан 21, препятствующий перетоку газа из приемной емкости (не показана) в верхнюю камеру 12. Внутри цилиндра 6 имеется упорная шайба 22, выполненная из упругого материала, расположенная в верхней части и примыкающая к крышке 13. Выше уровня воды 9 внутри цилиндра имеется также ограничительная шайба 23, препятствующая движению поршня 17 ниже определенного уровня.

Каждый электрогидравлический разрядник 4 снабжен датчиком положения поршня 17. На фиг.3 показан оптический датчик, состоящий из лазерного излучателя 24, установленного на стойке 25, и фотоприемника 24', установленного на стойке 26. Луч от излучателя 24 проходит над верхним краем штока 17 и воспринимается фотоприемником 24', когда шток находится в спокойном состоянии.

Нормально открытые контакты 27 датчиков положения находятся в цепи питания катушек реле 5 (фиг.4).

Выходные концы шлангов 20 соединены с общим шлангом 28 (фиг.5), соединенным с приемной камерой 29 высокого давления. В шланге 28 перед входом в приемную камеру 29 имеется дополнительный обратный клапан 30. На выходе приемной камеры высокого давления имеется газовый редуктор (не показан), сочлененный с питающим шлангом 31. В шланге 31 установлен электроуправляемый клапан 32. Приемная камера 29 снабжена манометром 33, имеющим электрическую связь с клапаном 32. На выходе питающего шланга 31 установлен преобразователь энергии воздушного потока в электрическую энергию, состоящий из турбины 34 и электрического генератора 35.

Устройство для преобразования атмосферного электричества в электроэнергию действует следующим образом. Электрический заряд, имеющийся в атмосфере, по проводящему каналу 1 подводится к конденсатору 2. При достижении определенной величины напряжения на конденсаторе происходит пробой разрядника 3 и возникает разряд между электродами 10. В результате в одном из цилиндров 6 создается электрогидравлический удар, обладающий большой энергией. Под влиянием ударной волны поршень 17 движется вверх, преодолевая сопротивление газа в камере 12 и противодействие пружины 18. При этом поршень вытесняет воздух из верхней камеры 12 цилиндра 6 в трубопровод 20. Из трубопровода 20 воздух поступает приемную камеру 29. При этом напряжение в конденсаторе 2 снижется. По мере накопления заряда в конденсаторе 2 происходит очередной пробой и процесс повторяется. При достижении определенного давления в камере 29 по сигналу манометра 33 открывается клапан 32 и сжатый воздух поступает на воздушную турбину 34, которая приводит во вращение ротор генератора 35. Однако при наличии грозовой облачности, когда напряжение в атмосфере близко к возникновению молний, при сильных порывах ветра аэростат, прикрепленный к электропроводу 1, может быстро двигаться к грозовому облаку. В этом случае заряд конденсатора 2 может достигать пороговых значений за короткий период времени. В самом деле, известно, что значение напряженности грозового разряда доходит до 1500 кВ. Темп нарастания напряженности иногда превышает 600 кВ/с.

Из-за инерции механической части электрогидравлического разрядника он способен преобразовать напряжение с градиентом не более 100 кВ/с. Для того чтобы обеспечить полную утилизацию большого количества атмосферного электричества, необходимо, чтобы преобразование энергии происходило со скоростью, в несколько раз превышающей возможности одного электрогидравлического разрядника. Это достигается следующим образом. При срабатывании одного из разрядников 4 его шток 17, двигаясь вверх, перекроет луч соответствующего лазерного излучателя 24. Тогда на его приемник 24' сигнал не поступит. Нормально открытый контакт 26 разрывает цепь соответствующей катушки реле 5. Нормально открытый контакт последнего разрывает цепь питания сработавшего разрядника, предупреждая преждевременную подачу напряжения на его электроды. Поэтому при быстрой зарядке конденсатора 2 происходит пробой напряжения разрядника 3 и подвод напряжения к одному из следующих электрогидравлических разрядников 4. Время востановления режима ожидания каждого из сработавших разрядников составляет 0,1-0,5 с. Следовательно, количество их должно быть таким, чтобы успеть полностью воспринять быстро нарастающую волну атмосферного электричества. По предварительным расчетом общее число электрогидравлических разрядников составляет 10-12 шт.

Таким образом, способ преобразования атмосферного электричества состоит в следующем. По мере накопления электричества до определенной величины его с помощью электрогидравлических разрядников последовательно преобразуют в энергию пневматической системы с повышенным давлением. При достижении определенного давления энергию пневмосистемы с помощью ветрогенератора преобразуют в электроэнергию.

По расчетам суммарный КПД преобразования достигает 60%. Устройство электрогидравлического разрядника относительно простое. На выходе генератора 35 можно получить любое требуемое напряжение, в том числе и стандартное. Предполагаемый способ способен полностью преобразовать атмосферную энергию в электрическую. При этом удается избежать разрушительного воздействия грозовых разрядов на окружающую среду в районе действия предлагаемой установки.

Похожие патенты RU2366121C1

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ ИСПОЛЬЗОВАНИЯ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА 2009
  • Стребков Дмитрий Семенович
  • Некрасов Алексей Иосифович
  • Рощин Олег Алексеевич
  • Юферев Леонид Юрьевич
  • Трубников Владимир Захарович
RU2414106C2
ДВУХУРОВНЕВЫЙ СПОСОБ АККУМУЛИРОВАНИЯ ГРОЗОВОЙ И АТМОСФЕРНОЙ ЭЛЕКТРОЭНЕРГИИ 2007
  • Веревкин Василий Николаевич
  • Веревкин Дмитрий Васильевич
  • Чебунин Олег Владимирович
RU2340126C1
СПОСОБ АККУМУЛИРОВАНИЯ АТМОСФЕРНОЙ ЭЛЕКТРОЭНЕРГИИ 2004
  • Седов Александр Николаевич
  • Веревкин Василий Николаевич
RU2293451C2
УСТРОЙСТВО ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА 2012
  • Герасимов Александр Николаевич
  • Мисюченко Игорь Леонидович
RU2504129C1
ЭЛЕКТРОГИДРОУДАРНОЕ УСТРОЙСТВО ДЛЯ АКТИВАЦИИ НЕФТЕГАЗОНОСНОГО ПЛАСТА И СПОСОБ ПИТАНИЯ ЕГО ЭЛЕКТРИЧЕСТВОМ 2000
  • Лунев В.И.
  • Паровинчак М.С.
  • Зыков В.М.
RU2208142C2
Двигатель внутреннего сгорания 2021
  • Карбушев Виктор Фёдорович
RU2763804C1
ТРАНСФОРМАТОР ПОСТОЯННОГО ТОКА (ТПТ) И СПОСОБ ФУНКЦИОНИРОВАНИЯ ТПТ (ВАРИАНТЫ) 2017
  • Криштоп Анатолий Михайлович
RU2666682C1
УСТРОЙСТВО ДЛЯ ИСПОЛЬЗОВАНИЯ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА БОГДАНОВА - АТМОСФЕРНАЯ ЭЛЕКТРОСТАНЦИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И КОСМИЧЕСКИХ КОРАБЛЕЙ 1996
  • Богданов И.Г.
RU2124821C1
ГИБРИДНЫЙ ПРИВОД К ТРАНСПОРТНОМУ СРЕДСТВУ 1992
  • Нестеров Г.И.
  • Тихомиров А.Г.
RU2020242C1
СПОСОБ ДИСТАНЦИОННОГО КОНТРОЛЯ СКВАЖИННЫХ ЭЛЕКТРОРАЗРЯДНЫХ АППАРАТОВ 2008
  • Картелев Анатолий Яковлевич
  • Крюченков Сергей Степанович
  • Марунин Михаил Викторович
RU2382373C1

Реферат патента 2009 года СПОСОБ ПРЕОБРАЗОВАНИЯ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА В ЭЛЕКТРИЧЕСКУЮ ЭНЕРГИЮ

Изобретение относится к области приборостроения и может быть использовано для преобразования природных источников электричества. Технический результат - расширение функциональных возможностей. Для достижения данного результата по мере накопления электричества до определенной величины его с помощью электрогидравлических разрядников последовательно преобразуют в энергию пневматической системы с повышенным давлением. При достижении определенного давления энергию пневмосистемы с помощью ветрогенератора преобразуют в электроэнергию. 5 ил.

Формула изобретения RU 2 366 121 C1

Способ преобразования атмосферного электричества в электрическую энергию, при котором его фиксируют в накопителе, отличающийся тем, что по мере накопления электричества до определенной величины его с помощью электрогидравлических разрядников последовательно преобразуют в энергию пневматической системы с повышенным давлением и при достижении определенного давления энергию пневмосистемы с помощью ветрогенератора преобразуют в электроэнергию.

Документы, цитированные в отчете о поиске Патент 2009 года RU2366121C1

СПОСОБ АККУМУЛИРОВАНИЯ АТМОСФЕРНОЙ ЭЛЕКТРОЭНЕРГИИ 2004
  • Седов Александр Николаевич
  • Веревкин Василий Николаевич
RU2293451C2
УСТРОЙСТВО ДЛЯ ИСПОЛЬЗОВАНИЯ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА 1992
  • Блескин Борис Иванович
  • Блескин Иван Борисович
RU2030132C1
Бантиданов Л.Н
Электрические станции и подстанции
Госэнергоиздат
- М
- Л., 1958
Искусственный двухслойный мельничный жернов 1921
  • Паншин В.И.
SU217A1
Способ измерения порогов объемного оптического пробоя прозрачных материалов 1987
  • Крутякова В.П.
  • Смирнов В.Н.
SU1475328A1
СПОСОБ ВОЗБУЖДЕНИЯ ВЕЩЕСТВ В ГАЗОВОЙ ФАЗЕ СЛАБОЗАТУХАЮЩЕЙ ВОЛНОЙ ПРОБОЯ 1999
  • Марковец В.В.
  • Житов А.Н.
  • Супрун И.П.
RU2162262C1

RU 2 366 121 C1

Авторы

Пащенко Федор Федорович

Торшин Владимир Викторович

Круковский Леонид Ефимович

Бусыгин Борис Павлович

Даты

2009-08-27Публикация

2008-04-21Подача