Область техники, к которой относится изобретение
Настоящее изобретение относится к гибкому штоку в сборе вращающегося зонда, используемому в качестве носителя вихретокового вращающегося зонда для дефектоскопии изогнутых труб. Настоящее изобретение рассчитано главным образом на применение во вращающемся зонде для дефектоскопии труб парогенератора (с внутренним диаметром 13 мм) атомных электростанций типа WWER.
Поскольку вихретоковый зонд (вращающийся датчик и шток) необходимо втолкнуть и затем протянуть через изогнутую влажную трубу при помощи систем фрикционов с двумя парами ведущих колес, это является сложной задачей.
Уровень техники
Обычно шток вихретоковых вращающихся зондов, используемых в трубах с внутренним диаметром 13 мм, представляет собой гибкий нейлоновый шланг диаметром 3,2 мм (гибкий шток с четырьмя слоями). Независимо от того, имеет ли вращающийся зонд катушку крестовой намотки или спиральную катушку, вокруг штока навиты два коаксиальных кабеля, соединяющих датчик зонда с соединителем зонда. При помощи соединителя зонд соединен с узлом с электродвигателем, обеспечивающим вращение гибкого штока и датчика зонда вокруг собственной оси. Вокруг гибкого штока намотаны тонкие коаксиальные кабели, защищенные нейлоновыми бугорками, которые прикреплены к штоку на расстоянии примерно 6 мм друг от друга. Вращающийся зонд вращается со скоростью 300 оборотов в минуту при скорости протягивания 5 мм/с.
Данная система успешно применяется на прямых трубах или трубах с незначительным изгибом, что не касается труб парогенераторов атомных электростанций типа WWER. В данном конкретном случае у большей части труб изгиб расположен непосредственно после входной части. Данный изгиб не позволяет узлу с электродвигателем войти в трубу. С учетом того, что в соответствии с требованиями дефектоскопия осуществляется на расстоянии до 9 метров внутри трубы, длина гибкого штока в сборе должна быть не менее 9 метров.
Большая часть современных приспособлений, рассчитанных на вихретоковую дефектоскопию труб парогенераторов АЭС типа WWER, имеют толкающее-вытягивающее устройство, установленное внутри коллектора парогенератора вблизи входной части труб (у вихретоковых зондов катушечного типа). В связи с этим не может использоваться вращающийся зонд упомянутого типа, поскольку шток должен вращаться и одновременно перемещаться в осевом направлении системой фрикционов толкающего-вытягивающего устройства зонда, воздействующего на шток.
Известен гибкий шток в сборе вихретокового вращающегося зонда с высоким показателем гибкости с возможностью проталкивания-вытягивания и одновременного вращения (Публикационная заявка US 2004/075432 от 22.04.2004). Устройство используется для дефектоскопии изогнутых труб, в частности парогенераторов АЭС.
Гибкий шток в сборе содержит сплошную гибкую оплетку (рукав), внутренний способный изгибаться сердечник (шток), выполненный из скрученной проволоки, прочной на разрыв, и жесткий в продольном направлении, и навитый на сердечник электропроводящий коаксиальный кабель, связанный с измерительным устройством, и удерживающий сердечник внутри оплетки и предотвращающий его выпучивание.
Коаксиальный кабель закреплен на сердечнике лентой и окружен сплошной оболочкой со смазкой для уменьшения трения между внутренней структурой штока и оплеткой, причем вся образованная структура плотно входит в оплетку. Оплетка закрыта с каждого конца заглушками для герметизации внутренней структуры и предотвращения перемещения внутренней структуры относительно оплетки.
Такая конструкция штока в сборе (сердечник (шток), коаксиальный кабель, смазывающая оболочка и оплетка) при вращении будет испытывать большое сопротивление со стороны стенок влажных труб парогенератора, что значительно затруднит прохождение зонда через изгибы труб.
Краткое изложение сущности изобретения
Исходя из упомянутых недостатков основной технической задачей является обеспечение вращательного движения штока во время проталкивания-вытягивания вращающегося зонда, используемого на атомных электростанциях типа WWE.
Задача решается тем, что в гибком штоке в сборе вращающегося вихретокового зонда с высоким показателем гибкости, содержащем гибкий шток из прочной на разрыв проволоки и намотанные на него электропроводящие коаксиальные кабели, поверх которых размещен гибкий рукав, согласно изобретению гибкий шток установлен с возможностью вращения в гибком рукаве и названные коаксиальные кабели закреплены на штоке через равные расстояния термоусаживающими трубками.
С учетом упомянутых выше ограничений дефектоскопии был разработан новый гибкий шток в сборе, способный плавно проходить через изгибы труб, вращаясь и одновременно перемещаясь в осевом направлении.
Такое конструктивное выполнение устройства обеспечит при проталкивании-вытягивании гибкого рукава ведущими колесами толкателя зонда вращение гибкого штока с закрепленными на нем кабелями внутри рукава. Поскольку рукав не будет совершать вращательного движения, сопротивление влажных стенок трубы при его движении будет минимальным. Сохранение внутри рукава прекрасной гибкости штока и кабелей при вращении обеспечат зонду, соединенному с вращающимся штоком, возможность прохождения через любые изгибы трубы, при полном сохранении данных, передаваемых по коаксиальному кабелю.
Желательно, чтобы гибкий рукав был выполнен из нейлона, на гибкий шток были намотаны два коаксиальных кабеля диаметром 0,5 мм, а гибкий шток имел бы диаметр 3,2 мм, а расстояние закрепления кабелей на штоке составляло 50 мм. При таком варианте выполнения штока в сборе достигается наилучшая гибкость коаксиальных кабелей и штока при вращении и одновременном поступательном движении, внутри рукава.
Для обеспечения вращения в рукаве в гибкий шток на обоих его концах припаяны штифты, на каждый из которых установлен подшипник, ввернутый в гибкий рукав, и напрессована гайка. Такой узел обеспечит беспрепятственное вращение штока внутри рукава при одновременном поступательном движении при проталкивании-вытягивании рукава при движении зонда по трубам.
По сравнению с известными конструкциями, в которых для крепления и защиты кабелей применялись нейлоновые бугорки, которые делали невозможным одновременное проталкивания-вытягивания и вращение штока, в настоящей конструкции их функции поделены между термоусаживающимися трубками и нейлоновой трубкой.
Краткое описание чертежей
Изобретение поясняется далее более подробно на конкретном случае его осуществления со ссылкой на прилагаемые чертежи, на которых согласно изобретению изображено:
на фиг.1 - общий вид гибкого штока в сборе вращающегося зонда,
на фиг.2 - фрагмент поперечного сечения гибкого штока в сборе вращающегося зонда,
на фиг.3 - общий вид и проекция штифта,
на фиг.4 - общий вид и проекция подшипника,
на фиг.5 - общий вид и проекция гайки,
на фиг.6 - подузел подшипника,
на фиг.7 - поперечное сечение гибкого штока вращающегося зонда по линии соединителя штока и двигателя.
Лучший вариант осуществления изобретения.
На фиг.1 показан вращающийся зонд, включающий датчик в сборе, прикрепленный к гибкому штоку в сборе. Гибкий шток диаметром 3,2 мм рассчитан на малую деформацию при скручивании и обозначен позицией 1 на фиг.2. Гибкий шток изготовлен из 4 или 5 слоев прочной на разрыв проволоки. Гибкий шток в сборе заканчивается соединителем для прикрепления зонда к узлу с двигателем.
На фиг.2 показан фрагмент поперечного сечения гибкого штока 1 в сборе вращающегося зонда. Основным элементом устройства является гибкий шток диаметром 3,2 мм и длиной до 11 м, достаточной для проверки труб парогенератора типа WWE.
На шток намотаны два коаксиальных кабеля диаметром 0,5 мм. Обычно используют коаксиальные кабели типа AWG40, многожильные 40- или 50-омные.
На обоих концах штока 1 установлены штифты 2 из нержавеющей стали. На фиг.3 показан общий вид штифта 2. Штифты 2 крепят к штоку 1 путем пайки.
После этого на шток 1 наматывают кабели (уже соединенные с датчиком зонда). Затем поверх штока 1 и кабелей на расстоянии 50 мм друг от друга помещают термоусаживающиеся трубки 3 (диаметром 6 мм, длиной 4 мм, покрытые изнутри клеем, с коэффициентом усадки 3:1) на фиг.2. При помощи струйного сушильного аппарата трубки 3 нагревают и вместе с кабелем соединяют со штоком 1. За счет крепления коаксиальных кабелей через каждые 50 мм обеспечивают гибкость кабелей во время вращательного движения.
На следующей стадии осуществляют подготовку нейлонового рукава (материал - нейлон 66, размером 5/16 Т - ⌀7,93/⌀5,9 мм), который обозначен позицией 4 на фиг.2. Нейлоновый рукав 4 разрезают на отрезки требуемой длины, каждый конец которых снабжают резьбой 1/4-28 длиной 6 мм. Подготовленный рукав 4 помещают поверх штока 1 на передний штифт 2. В процессе применения каждую нагретую термоусаживающуюся трубку 3 смазывают (консистентной смазкой, загущенной литиевыми мылами). Подшипник 5 (материал - бронза) на фиг.2 вворачивают внутрь рукава, используя Loctite 262 в качестве клеящего состава для фиксации резьбовых соединений. Смазку также помещают на штифт 2 (в контакте с подшипником). Наконец, на штифт 2 устанавливают гайку 6, изображенную на фиг.5, фиксирующую весь подшипник в сборе. Гайку (из нержавеющей стали) запрессовывают в штифт 2, чтобы предотвратить ее перемещение (на 180° относительно токопроводящей дорожки). Аналогичную процедуру повторяют на соединительной стороне штока 1. Подузел подшипника обеспечивает удержания нейлонового рукава За счет этого ведущие колеса толкателя зонда могут толкать-тянуть нейлоновый рукав 4, при этом гибкий шток одновременно вращается внутри рукава. На фиг.6 также показан подузел подшипника. На штоке устанавливают штифт 2 на фиг.6. Поскольку подшипник 5 короче, чем штифт 2, он способен слегка перемещаться вдоль штифта. Гайка 6 ограничивает перемещение подшипника и запрессована в штифт 2. На фиг.7 показано соединение штока с двигателем. К подузлу подшипника 5 прикреплен нейлоновый рукав 4, установленный на гибком штоке 1. Шток 1 прикреплен соединителем 9 к узлу с двигателем 10.
Промышленная применимость
Как упомянуто выше, гибкий шток в сборе вращающегося зонда рассчитан на применение в вихретоковом вращающемся зонде для дефектоскопии труб (с внутренним диаметром 13 мм) атомных парогенераторов, установленных на электростанциях типа WWER. Тем не менее, устройство также применимо для других аналогичных целей.
название | год | авторы | номер документа |
---|---|---|---|
ГИБКИЙ ШТОК В СБОРЕ | 2005 |
|
RU2367839C2 |
Устройство для вихретокового контроля труб теплообменника с трубами U-образной формы | 1989 |
|
SU1722252A3 |
Манипулятор для внутреннего контроля цилиндрических резервуаров | 1985 |
|
SU1442089A3 |
СПОСОБ СПУСКА ВОЛОКОННО-ОПТИЧЕСКОГО КАБЕЛЯ В ПАРОНАГНЕТАТЕЛЬНУЮ СКВАЖИНУ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРНОГО РАСПРЕДЕЛЕНИЯ | 2012 |
|
RU2490421C1 |
ЗОНД И СПОСОБ ЕГО ПРОДВИЖЕНИЯ ВНУТРИ ПОЛОСТИ ТЕЛА (ВАРИАНТЫ) | 2000 |
|
RU2246891C2 |
ЭЛЕКТРОННЫЙ БЛОК ДЛЯ МОРСКОЙ КОСЫ | 2016 |
|
RU2695291C2 |
Вращающийся вихретоковый преобразователь для контроля труб | 1989 |
|
SU1812485A1 |
КРИОГЕННЫЙ ПЕРЕКАЧИВАЮЩИЙ РУКАВ С ВОЛОКНИСТЫМ ИЗОЛИРУЮЩИМ СЛОЕМ | 2007 |
|
RU2571696C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПЕРЕКАЧИВАЮЩЕГО РУКАВА | 2007 |
|
RU2435097C2 |
ПОДАЮЩЕЕ УСТРОЙСТВО ДЛЯ ПОДАЧИ ЖЕЛУДОЧНО-КИШЕЧНОГО УСТРОЙСТВА В ЖЕЛУДОЧНО-КИШЕЧНЫЙ ТРАКТ ПАЦИЕНТА | 2015 |
|
RU2662858C1 |
Изобретение: гибкий шток в сборе вращающегося зонда используется в качестве носителя вихретокового вращающегося зонда для дефектоскопии труб и рассчитано главным образом на применение во вращающемся зонде для дефектоскопии труб (с внутренним диаметром 13 мм) парогенераторов атомных электростанций типа WWER. Данное устройство обладает высоким показателем гибкости с возможностью проталкивания-вытягивания и одновременного вращения. Гибкий шток в сборе вращающегося вихретокового зонда с высоким показателем гибкости, содержащий гибкий шток из прочной на разрыв проволоки и намотанные на него электропроводящие коаксиальные кабели, поверх которых размещен гибкий рукав, при этом гибкий шток установлен с возможностью вращения в гибком рукаве и названные коаксиальные кабели закреплены на штоке через равные расстояния термоусаживающими трубками. 6 з.п. ф-лы, 8 ил.
1. Гибкий шток в сборе вращающегося вихретокового зонда с высоким показателем гибкости, содержащий гибкий шток из прочной на разрыв проволоки и намотанные на него электропроводящие коаксиальные кабели, поверх которых размещен гибкий рукав, отличающийся тем, что гибкий шток установлен с возможностью вращения в гибком рукаве и названные коаксиальные кабели закреплены на штоке через равные расстояния термоусаживающими трубками.
2. Гибкий шток в сборе вращающегося зонда по п.1, отличающийся тем, что к названному гибкому штоку припаян штифт на заданном расстоянии в зависимости от желаемой длины зонда.
3. Гибкий шток по пп.1 и 2, отличающийся тем, что расстояние между термоусаживающими трубками составляет 50 мм.
4. Гибкий шток в сборе вращающегося зонда по п.1, отличающийся тем, что на гибкий шток намотаны два коаксиальных кабеля диаметром 0,5 мм.
5. Гибкий шток по п.1, отличающийся тем, что названный гибкий рукав выполнен из нейлона.
6. Гибкий шток в сборе вращающегося зонда по пп.1, 2 и 5, отличающийся тем, что он имеет подшипник, ввернутый внутрь нейлонового рукава и установленный на штифте, и гайку, навинченную на штифт.
7. Гибкий шток по пп.2 и 6, отличающийся тем, что на обоих концах штока припаяны по одному штифту, на каждом из которых установлен названный подшипник.
US 2004075432 A, 22.04.2004 | |||
Вихретоковый зонд для контроля труб парогенератора | 1990 |
|
SU1836634A3 |
ЗОНД | 2000 |
|
RU2176397C1 |
DE 4417428 C1, 23.11.1995 | |||
DE 202004002132 U1, 23.09.2004 | |||
US 2004099175 A1, 27.05.2004. |
Авторы
Даты
2009-09-20—Публикация
2005-03-07—Подача