ГЕНЕРАТОР СИНГЛЕТНОГО КИСЛОРОДА НА ОСНОВЕ ВЫСОКОЧАСТОТНОГО РАЗРЯДА В ПОТОКЕ ГАЗА Российский патент 2009 года по МПК H01S3/95 

Описание патента на изобретение RU2369950C2

Изобретение преимущественно относится к области квантовой электроники, связанной с созданием кислородно-йодного лазера, а также может использоваться в различных областях науки и техники, например в плазмохимии и биологии.

Известны различные способы, применяемые для создания инверсии населенностей уровней в атомарном йоде [1]. К основным методам можно отнести оптическую накачку, накачку электронным ударом в разряде и химическую накачку. В качестве аналога можно указать химический кислородно-йодный лазер [1], составной частью которого является генератор синглетного кислорода O2 (a1Δg). Для получения синглетного кислорода газообразный хлор пробулькивают через щелочной (NaOH) раствор Н2O2 [1]. Синглетный кислород - это метастабильная электронно-возбужденная молекула кислорода O2 (a1Δg), имеющая радиационное время жизни t≈4500 с, а также низкие скорости нерезонансной дезактивации. Эта особенность синглетного кислорода позволяет сохранять длительное время неравновесный энергозапас в среде, содержащей синглетный кислород. Наиболее ярким примером такого использования является кислородно-йодный лазер (КИЛ), принципом действия которого является резонансная передача энергии возбуждения от молекул синглетного кислорода на атомы йода. Наиболее близким техническим решением является генератор возбужденного (синглетного) кислорода [2], содержащий разрядную трубку, состоящую из полого катода и изолированного анода, подключенных к источнику высокочастотной энергии и образующих газоразрядный промежуток, систему прокачки газообразного кислорода через газоразрядный промежуток, инжектор подачи газообразной окиси азота в газоразрядный промежуток.

Высокочастотный разряд - один из наиболее эффективных способов возбуждения синглетного кислорода в потоке газа. Прогресс в использовании электроразрядного возбуждения синглетного кислорода для применений в КИЛ связан в первую очередь с возможностью увеличения давления активной среды. При использовании высокочастотного разряда удается вложить необходимую энергию при давлении газа вплоть до нескольких десятков торр. Однако, как видно, получению необходимой концентрации синглетного кислорода препятствует тушение синглетного кислорода образующимися в разряде атомами кислорода. При таких давлениях основным процессом, определяющим гибель атомов, является их гетерогенная рекомбинация на стенках разрядной трубки.

В предлагаемом генераторе синглетного кислорода на основе высокочастотного разряда в потоке газа, содержащем разрядную трубку, источник высокочастотной энергии, подключенный к изолированным друг от друга аноду и катоду, расположенным вокруг разрядной трубки и образующим газоразрядный промежуток, систему прокачки газообразного кислорода через газоразрядный промежуток, задачей удаления атомов кислорода из возбуждаемого газа является каталитическая гетерогенная рекомбинация атомов кислорода на стенках разрядной трубки, которые покрыты окисью ртути.

Наиболее эффективно синглетный кислород образуется в α-моде разряда, когда разряд горит однородно при нормальной плотности тока. Наблюдалось насыщение концентрации синглетного кислорода при увеличении давления и удельного энерговклада. Причиной насыщения синглетного кислорода с ростом давления является быстрое тушение синглетного кислорода в процессе:

O3(Р)+O2(a1Δg)+O2→2O2+O(3P).

С увеличением энерговклада изменялся режим горения разряда и энергетическая эффективность падает из-за больших потерь в приэлектродных слоях. Синглетный кислород достигает стенок трубки за счет диффузии. Поэтому для того чтобы эффективно удалять атомарный кислород при давлении газа в несколько десятков торр, диаметр трубки необходимо уменьшить до нескольких миллиметров. Это в свою очередь требует увеличения частоты возбуждающего поля, т.к. при низкой частоте 13 МГц и режиме работы в α-моде горения разряда размер приэлектродных слоев становится сравним с радиусом трубки. Поэтому в предлагаемом генераторе синглетного кислорода используется ВЧ-генератор, работающий на частоте 160 МГц. Это позволяет эффективно возбуждать газ при давлении ~30 Торр в трубке диаметром ~7 мм, оставаясь при этом в α-моде горения разряда. В то же время в трубке диаметром 7 мм происходит быстрая рекомбинация атомов кислорода на стенках трубки, покрытых окисью ртути. Все это позволяет при достаточно высоком уровне энерговклада в газ порядка 400 Дж/ммоль получить долю синглетного кислорода на уровне 10-15% от исходной концентрации кислорода в газе с сохранением величины энергетической эффективности на уровне 4-6%.

На чертеже изображена схема генератора синглетного кислорода, содержащая разрядную трубку, через которую прокачивается кислород 1, внешние электроды 2 подсоединены через согласующее устройство 3 к ВЧ (высокочастотному) генератору 4. Внутренние стенки трубки в зоне разряда покрыты окисью ртути 5, на выходе трубки - синглетный кислород 6.

Устройство работает следующим образом.

Через разрядную трубку прокачивается поток кислорода 1. Внешние электроды 2 охлаждаются водой. Разрядная трубка выполнена длиной 10 см и диаметром от 7 до 10 мм. ВЧ-генератор 4, работающий на частоте 160 МГц, через согласующее устройство подключен к внешним электродам 2. Скорость протока кислорода составляла несколько метров в секунду. Величина концентрации синглетного кислорода 6 определялась радиометром.

Источники информации

1. Г.Бредерлов и др. «Мощный йодный лазер». Москва, Энергоатомиздат, 1965 г., стр.30-32.

2. Заявка на изобретение РФ №2002131258, 2002 г. Федеральный институт промышленной собственности. Российские патенты.

Похожие патенты RU2369950C2

название год авторы номер документа
КИСЛОРОД-ЙОДНЫЙ ЛАЗЕР 2006
  • Баранов Геннадий Алексеевич
  • Аброян Марьям Артуровна
  • Смирнов Сергей Александрович
RU2321118C2
СПОСОБ ПОЛУЧЕНИЯ СИНГЛЕТНОГО КИСЛОРОДА В ПЛАЗМЕ НЕСАМОСТОЯТЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО РАЗРЯДА 2002
  • Ионин А.А.
  • Климачев Ю.М.
  • Котков А.А.
  • Кочетов И.В.
  • Селезнев Л.В.
  • Напартович А.П.
  • Синицын Д.В.
  • Хагер Гордон Д.
RU2206495C1
СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИЙ РАДИКАЛОВ В ПОТОКЕ ГАЗА 2007
  • Ковалев Александр Сергеевич
  • Рахимов Александр Турсунович
  • Рахимова Татьяна Викторовна
  • Васильева Анна Николаевна
  • Брагинский Олег Владимирович
  • Лопаев Дмитрий Викторович
RU2363941C1
СПОСОБ И ГАЗОТУРБИННАЯ УСТАНОВКА ДЛЯ УТИЛИЗАЦИИ ПОПУТНЫХ НЕФТЯНЫХ ГАЗОВ 2013
  • Старик Александр Михайлович
  • Кулешов Павел Сергеевич
  • Савельев Александр Михайлович
  • Титова Наталия Сергеевна
RU2540386C1
АКТИВНАЯ СРЕДА ДЛЯ ЭЛЕКТРОРАЗРЯДНОГО СО-ЛАЗЕРА ИЛИ УСИЛИТЕЛЯ И СПОСОБ ЕЕ НАКАЧКИ 2007
  • Ионин Андрей Алексеевич
  • Климачев Юрий Михайлович
  • Козлов Андрей Юрьевич
  • Котков Андрей Александрович
  • Селезнев Леонид Владимирович
  • Синицын Дмитрий Васильевич
RU2354019C1
СПОСОБ И УСТРОЙСТВО КВАЗИНЕПРЕРЫВНОГО ФОТОИОНИЗАЦИОННОГО ВОЗБУЖДЕНИЯ ПЛОТНЫХ ЛАЗЕРНЫХ СРЕД 2007
  • Саенко Владимир Борисович
RU2349999C1
СПОСОБ ПОЛУЧЕНИЯ ИНВЕРСИОННОЙ НАСЕЛЕННОСТИ НА АТОМАХ ЙОДА 2013
  • Загидуллин Марсель Вакифович
  • Азязов Валерий Николаевич
  • Малышев Михаил Сергеевич
RU2548622C1
ЭЛЕКТРОРАЗРЯДНЫЙ КИСЛОРОДНО-ЙОДНЫЙ ЛАЗЕР С БУФЕРНЫМ ГАЗОМ 2013
  • Азязов Валерий Николаевич
  • Загидуллин Марсель Вакифович
  • Михеев Павел Анатольевич
RU2558648C2
ХИМИЧЕСКИЙ КИСЛОРОДНО-ЙОДНЫЙ ЛАЗЕР С БУФЕРНЫМ ГАЗОМ 2008
  • Азязов Валерий Николаевич
  • Уфимцев Николай Иванович
RU2390892C2
Способ получения атомов йода 2016
  • Михеев Павел Анатольевич
  • Демьянов Андрей Владимирович
  • Азязов Валерий Николаевич
  • Загидуллин Марсель Вакифович
  • Уфимцев Николай Иванович
  • Гильдина Анна Руслановна
RU2649025C2

Реферат патента 2009 года ГЕНЕРАТОР СИНГЛЕТНОГО КИСЛОРОДА НА ОСНОВЕ ВЫСОКОЧАСТОТНОГО РАЗРЯДА В ПОТОКЕ ГАЗА

Изобретение относится к области лазерной техники и может быть использовано, например, в физике низкотемпературной плазмы и биологии. Генератор синглетного кислорода на основе высокочастотного разряда в потоке газа для йодного лазера содержит разрядную трубку, источник высокочастотной энергии, подключенный к изолированным друг от друга аноду и катоду, расположенным вокруг разрядной трубки и образующим газоразрядный промежуток, систему прокачки газообразного кислорода через газоразрядный промежуток, в котором с целью повышения выхода синглетного кислорода за счет увеличения давления газовой среды и удаления атомарного кислорода диаметр разрядной трубки равен 7-10 мм, внутренняя поверхность разрядной трубки покрыта слоем окиси ртути, а частота источника ВЧ-энергии составляет 160 МГц. Генератор позволяет получить долю синглетного кислорода на уровне 10-15% от исходной концентрации кислорода в газе с сохранением величины энергетической эффективности на уровне 4-6%. 1 ил.

Формула изобретения RU 2 369 950 C2

Генератор синглетного кислорода на основе высокочастотного разряда в потоке газа для йодного лазера, содержащий разрядную трубку, источник высокочастотной энергии, подключенный к изолированным друг от друга аноду и катоду, расположенным вокруг разрядной трубки и образующим газоразрядный промежуток, систему прокачки газообразного кислорода через газоразрядный промежуток, отличающийся тем, что диаметр разрядной трубки равен 7-10 мм, внутренняя поверхность разрядной трубки покрыта слоем окиси ртути, а частота источника ВЧ энергии составляет 160 МГц.

Документы, цитированные в отчете о поиске Патент 2009 года RU2369950C2

RU 2002131258 А, 10.05.2004
ГЕНЕРАТОР СИНГЛЕТНОГО КИСЛОРОДА 2002
  • Сафонов В.С.
RU2261506C2
ГЕНЕРАТОР СИНГЛЕТНОГО КИСЛОРОДА 2005
  • Бакшин Виктор Всеволодович
  • Буряк Евгений Викторович
  • Выскубенко Борис Александрович
  • Горбачева Елена Витальевна
  • Ильин Сергей Павлович
  • Колобянин Юрий Вадимович
  • Свищев Виктор Владимирович
RU2307434C2
JP 7254738 А, 03.10.1995
US 2006078032 А1, 13.04.2006.

RU 2 369 950 C2

Авторы

Ковалев Александр Сергеевич

Рахимов Александр Турсунович

Рахимова Татьяна Викторовна

Васильева Анна Николаевна

Брагинский Олег Владимирович

Лопаев Дмитрий Викторович

Прошина Ольга Вячеславовна

Манкелевич Юрий Александрович

Даты

2009-10-10Публикация

2007-11-20Подача