СИСТЕМА И СПОСОБ ДЛЯ ОТБОРА ПРОБ ПЛАСТОВОЙ ТЕКУЧЕЙ СРЕДЫ Российский патент 2009 года по МПК E21B49/00 E21B49/08 

Описание патента на изобретение RU2373393C2

Настоящее изобретение в основном относится к оценке пласта, через который проходит ствол скважины, и более конкретно к системе и способу для отбора проб пластовой текучей среды.

Необходимость получения проб пластовой текучей среды из ствола скважины для химического и физического анализа осознается нефтяными компаниями в течение длительного времени, и такой отбор проб на протяжении многих лет осуществляет правопреемник настоящего изобретения, Schlumberger. Пробы пластовой текучей среды, также известной как коллекторная текучая среда, обычно собирают на как можно более ранней стадии эксплуатации продуктивного пласта для анализа на поверхности, а более конкретно, в специализированных лабораториях. Информация, которая обеспечивается таким анализом, имеет жизненно важное значение при планировании и разработке углеводородных коллекторов, а также при оценивании приемистости и отдачи продуктивного пласта.

Процесс отбора проб из ствола скважины включает спуск скважинного пробоотборника, такого как спускаемый на тросе модульный контрольно-измерительный прибор для оценки динамики пластов (MDT™), принадлежащий и поставляемый Schlumberger, в ствол скважины с целью отбора пробы (или многочисленных проб) пластовой текучей среды при контакте между элементом зонда пробоотборника и стенкой ствола скважины. На протяжении такого контакта посредством пробоотборника создается перепад давления для стимулирования втекания пластовой текучей среды в одну или несколько камер пробоотборника внутри пробоотборника. Этот и аналогичные процессы описаны в патентах США №№4860581, 4936139 (оба переуступлены Schlumberger), 5303775, 5377755 (оба переуступлены Western Atlas) и 5934374 (переуступлен Halliburton).

В процессе получения проб текучей среды из подземного пласта могут возникать различные проблемы. Например, еще раз касаясь нефтедобывающей промышленности, текучая среда вокруг ствола скважины, из которой получают пробы, обычно содержит загрязнители, такие как фильтрат бурового раствора, используемого при бурении скважины. Это материал часто загрязняет чистую или «первичную» текучую среду, содержащуюся в подземном пласте, когда его извлекают из среды, в результате чего текучая среда, как правило, непригодна для выборочного контроля и/или оценивания углеводородной текучей среды. Когда текучую среду извлекают в скважинный прибор, загрязнители, являющиеся результатом процесса бурения и/или окружающие ствол скважины, иногда входят в прибор вместе с текучей средой из окружающего пласта.

Для выполнения обоснованного анализа пласта предпочтительно иметь отобранную текучую среду достаточной чистоты, чтобы она адекватно представляла текучую среду, содержащуюся в пласте (то есть «первичную» текучую среду). Другими словами, предпочтительно, чтобы текучая среда имела минимальную степень загрязнения для достаточного или приемлемого представления посредством него данного пласта при выборочном контроле и/или оценивании. Поскольку текучую среду отбирают через ствол скважины, глинистую корку, цемент и/или другие слои, то во время отбора проб трудно исключить загрязнение пробы текучей среды при протекании из пласта в скважинный прибор. Поэтому задача заключается в получении проб чистой текучей среды при небольшом загрязнении или отсутствии его.

Для получения подземных текучих сред с целью выборочного контроля и оценивания были предложены различные способы и устройства. Например, в патентах США №№6230557 (Ciglenes et al.), 6223822 (Jones), 4416152 (Wilson), 3611799 (Davis) и в публикации WO 96/30628 Международной заявки показаны некоторые зонды и связанные с ними способы для улучшения отбора проб. Другие способы были разработаны для отделения первичных текучих сред во время отбора проб. Например, в патенте США №6301959 (Hrametz et al.) раскрыт зонд для отбора проб с двумя гидравлическими линиями для извлечения пластовых текучих сред из двух интервалов в стволе скважины. Скважинные текучие среды извлекаются в защитную зону отдельно от текучих сред, извлекаемых в зону зонда. В заявке на патент США регистрационный номер 10/184833, переуступленной правопреемнику настоящего изобретения, предложены дополнительные способы для получения чистой текучей среды при извлечении пластовой текучей среды в скважинный прибор. Несмотря на такие успехи в области отбора проб остается необходимость в разработке способов для отбора проб текучей среды, при осуществлении которых оптимизируется качество пробы.

С учетом существующей технологии сбора подземных текучих сред для выборочного контроля и оценивания остается необходимость в системах и способах, в которых обеспечивается возможность удаления загрязненной текучей среды и/или получения приемлемой пластовой текучей среды. Следовательно, желательно разработать способы для удаления загрязнения из скважинного прибора, с тем чтобы можно было собирать пробы более чистой текучей среды. Также желательно иметь систему, в которой оптимизированы загрузка насоса и уровень загрязнения пробы при снижении вероятности заклинивания прибора в скважине.

Техническим результатом настоящего изобретения является создание способа и системы, использованием которых можно решить или, по меньшей мере, ослабить значимость некоторых или всех проблем, описанных выше.

Этот технический результат достигается тем, что система для отбора проб пластовой текучей среды, предназначенная для удаления загрязнения из пластовой текучей среды, собранной посредством скважинного прибора из подземного пласта, содержит, по меньшей мере, одну камеру пробоотборника, расположенную в скважинном приборе, для приема пластовой текучей среды, и отводящую выкидную линию, в рабочем состоянии соединенную с камерой пробоотборника, для избирательного удаления из камеры пробоотборника одной загрязненной части пластовой текучей среды, чистой части пластовой текучей среды и их комбинаций, в результате чего загрязнение удаляется из пластовой текучей среды.

Скважинный прибор может быть выбран из группы, состоящей из прибора, спускаемого в скважину на тросе, бурового инструмента, прибора гибкой насосно-компрессорной колонны и их комбинаций.

По меньшей мере, одна камера пробоотборника может включать первую камеру пробоотборника и вторую камеру пробоотборника и дополнительно имеется передаточная выкидная линия для прохождения, по меньшей мере, части пластовой текучей среды из первой камеры пробоотборника во вторую камеру пробоотборника.

Отводящая выкидная линия в рабочем состоянии может быть соединена со второй камерой пробоотборника для прохождения, по меньшей мере, части пластовой текучей среды из первой камеры пробоотборника во вторую камеру пробоотборника.

Система может дополнительно содержать сбросную выкидную линию для прохождения текучей среды из основной выкидной линии в ствол скважины.

Система может дополнительно содержать датчики для определения параметров пласта. Датчики могут быть расположены в, по меньшей мере, одной из выкидных линий, в, по меньшей мере, одной из камер пробоотборника и в их комбинациях.

Система может дополнительно содержать анализатор текучей среды, способный контролировать загрязнение пластовой текучей среды.

Система может дополнительно содержать сепаратор текучей среды.

Сепаратор текучей среды может представлять собой одно из гальки, химикатов, катализаторов, активаторов, деэмульгаторов и комбинаций из них.

По меньшей мере, одна камера пробоотборника может иметь поршень, перемещаемый в ней со скольжением и разделяющий камеру пробоотборника на полость пробы и буферную полость.

Отводящая выкидная линия может проходить из, по меньшей мере, одной камеры пробоотборника в ствол скважины для сброса загрязненной текучей среды из полости пробы в ствол скважины.

Отводящая выкидная линия может проходить из, по меньшей мере, одной камеры пробоотборника в сборную камеру с целью сбора пластовой текучей среды.

Отводящая выкидная линия может быть снабжена патрубком, расположенным в камере пробоотборника, для выборочного удаления из него текучей среды.

Система может дополнительно содержать газовый аккумулятор, в рабочем состоянии связанный с основной выкидной линией, способный обеспечивать объединение газовых пузырьков друг с другом до прохождения в камеру пробоотборника.

Система может дополнительно содержать зонд для извлечения пластовой текучей среды из подземного пласта в скважинный прибор и основную выкидную линию, проходящую от зонда, для прохождения пластовой текучей среды из зонда в скважинный прибор, при этом, по меньшей мере, одна камера пробоотборника в рабочем состоянии соединена с основной выкидной линией для сбора в ней пластовой текучей среды.

Указанный технический результат достигается также и тем, что способ для отбора проб пластовой текучей среды из подземного пласта посредством скважинного прибора включает следующие операции:

расположение скважинного прибора в стволе скважины;

установление сообщения по текучей среде между скважинным прибором и окружающим пластом;

извлечение текучей среды из пласта в скважинный прибор;

сбор пластовой текучей среды в, по меньшей мере, одной камере пробоотборника;

вытягивание из камеры пробоотборника одной загрязненной части пластовой текучей среды, чистой части пластовой текучей среды и их комбинаций.

Способ может дополнительно включать отделение чистой части пластовой текучей среды от загрязненной части пластовой текучей среды. Пластовую текучую среду можно отделять путем вытягивания загрязненной части пластовой текучей среды из камеры пробоотборника или с помощью одного из обеспечения его осаждения, перемешивания, добавок и их комбинаций.

Добавки могут представлять собой гальку, деэмульгаторы и их комбинации.

Пластовую текучую среду можно отделять путем перекачивания чистой части в сборную камеру.

Загрязненную часть пластовой текучей среды можно сбрасывать в ствол скважины.

Способ может дополнительно включать идентификацию одной из чистой части пластовой текучей среды, загрязненной части пластовой текучей среды и их комбинаций.

Другие объекты и преимущества настоящего изобретения станут понятными из нижеследующего описания со ссылкой на прилагаемые чертежи, на которых изображено следующее:

фиг.1 изображает схематичный вид обычной буровой установки и скважинного прибора;

фиг.2 - детальный схематичный вид скважинного прибора, показанного на фиг.1, с показом системы для отбора проб пластовой текучей среды, имеющей зонд, камеры пробоотборника, насос и анализатор текучей среды;

фиг.3A - детальный схематичный вид одной из камер пробоотборника, показанного на фиг.2, с показом разделения текучей среды при опускании загрязнения на дно;

фиг.3B - детальный схематичный вид одной из камер пробоотборника, показанного на фиг.2, с показом разделения текучей среды при подъеме загрязнения кверху;

фиг.4 - схематичный вид альтернативного варианта осуществления камеры пробоотборника, показанного на фиг.3B, имеющей вторую выкидную линию с патрубком и датчики;

фиг.5 - схематичный вид альтернативного варианта осуществления камеры пробоотборника, показанной на фиг.3A, имеющей сбросную выкидную линию;

фиг.6 - схематичный вид альтернативного варианта осуществления камеры пробоотборника, показанной на фиг.3A или 3B, с показом в ней радиального разделения;

фиг.7 - схематичный вид камеры пробоотборника, показанной на фиг.3A или 3B, содержащей гальку;

фиг.8 - схематичный вид альтернативного варианта осуществления скважинного прибора, показанного на фиг.2, с показом другой конфигурации системы отбора проб, имеющей газовый аккумулятор.

Предпочтительные в настоящее время варианты осуществления изобретения показаны на упомянутых выше чертежах и подробно описаны ниже. При описании предпочтительных вариантов осуществления одинаковые или идентичные ссылочные номера использованы для идентификации однотипных или аналогичных элементов. Чертежи необязательно выполнены в масштабе, а с целью ясности и достижения соответствия некоторые детали и некоторые виды на чертежах могут быть показаны чрезмерно увеличенными или схематично.

На фиг.1 показан пример окружающей среды, в которой может быть использовано настоящее изобретение. В этом примере настоящее изобретение осуществляется посредством скважинного прибора 10. Примером имеющегося в продаже прибора 10 является модульный контрольно-измерительный прибор для определения динамики пластов (MDT™) фирмы Schlumberger Corporation, правопреемника настоящей заявки, и дополнительно описанный, например, в патентах США №№4936139, 4860581.

Скважинный прибор 10 выполнен с возможностью развертывания в стволе 14 скважины и спуска в него под буровой установкой 5, что должно быть понятно специалистам в области техники, к которой относится изобретение, на обычном талевом канате 18, или на проводнике, или на обычной насосно-компрессорной трубе, или на гибкой насосно-компрессорной трубе. Показанный прибор 10 снабжен различными модулями и/или компонентами 12, включая, но без ограничения ею, систему 10 для отбора проб пластовой текучей среды. Эта система 10 показана содержащей зонд 26, используемый для установления линии сообщения по текучей среде между скважинным прибором и подземным пластом 16. С целью отбора проб зонд 26 может проходить через глинистую корку 15 и доходить до боковой стенки 17 ствола 14 скважины. Пробы извлекаются в скважинный прибор 10 через зонд 26.

Хотя на фиг.1 показан модульный пробоотборник, спускаемый в скважину на тросе, предназначенный для сбора проб согласно настоящему изобретению, специалистам в области техники, к которой относится изобретение, должно быть понятно, что такая система может быть использована в любом скважинном приборе. Например, скважинным прибором может быть буровой инструмент, включающий в себя бурильную колонну и буровую коронку. Скважинным прибором может быть одним из множества приборов, например прибором для скважинных исследований по время бурения, прибором для каротажа во время бурения, гибкой насосно-компрессорной колонной или другой скважинной системой. Кроме того, скважинный прибор может иметь альтернативные конфигурации, например может быть модульным, унитарным, спускаемым на тросе, выполненным в виде гибкой насосно-компрессорной колонны, автономным, бурильным инструментом и выполненным в виде других разновидностей скважинных приборов.

На фиг.2 показана указанная система 18 для отбора проб текучей среды более подробно. Система 18 включает зонд 26, выкидную линию 27, камеры 28А и 28В пробоотборника, насос 30 и анализатор 32 текучей среды. Зонд 26 имеет впуск 25 в сообщении по текучей среде с первым участком 27а выкидной линии 27, предназначенный для избирательного извлечения текучей среды в скважинный прибор. В качестве альтернативы вместо зонда может быть использована пара пакеров (непоказанных). Примеры системы отбора проб текучей среды с использованием зондов и пакеров описаны в патентах США №№4936139 и 4860581.

Выкидная линий 27 соединяет впуск 25 с камерами пробоотборника, насосом и анализатором текучей среды. Текучая среда избирательно извлекается в прибор через впуск 25 при приведении в действие насоса 30 с целью создания разности давлений и извлечения текучей среды в скважинный прибор. Когда текучая среда втекает в прибор, то предпочтительно, чтобы она переходила из выкидной линии 27 мимо анализатора 32 в камеру 28B пробоотборника. Выкидная линия 27 имеет первый участок 27A и второй участок 27B. Первый участок проходит от зонда через скважинный прибор. Второй участок 27 В соединяет первый участок с камерами пробоотборника. Клапаны, например клапаны 29A и 29B, предусмотрены для обеспечения возможности избирательного втекания текучей среды в камеры пробоотборника. При желании могут быть использованы дополнительные клапаны, дроссельные вентили или другие устройства для регулирования потока.

Когда текучая среда проходит через анализатор 32, посредством анализатора могут быть определены содержание текучей среды, загрязнение, оптическая плотность, газонефтяной фактор и другие параметры. Анализатором 32 может быть, например, устройство для контроля текучей среды, такое как описанное в патентах США №№6178815 (Felling et al.) и 4994671 (Safinya et al.).

Текучую среду собирают в одной или в нескольких камерах 28B пробоотборника с целью разделения в них. После выполнения разделения части разделенной текучей среды могут быть откачены из камеры пробоотборника через сбросную выкидную линию 34 или перемещены в камеру 28A пробоотборника для извлечения на поверхность, что в настоящей заявке будет описано более полно. Кроме того, при желании собранную текучую среду можно оставить в камере 28В пробоотборника. В качестве альтернативы загрязненная текучая среда может быть откачена из камеры пробоотборника в ствол скважины (выкидная линия 34 на фиг.2) или в другую камеру.

Обратимся к фиг.3A и 3B, на которых разделение текучей среды в камере 28B пробоотборника показано более подробно. На фиг.3A и 3B показана камера пробоотборника, имеющая поршень 36, который разделяет камеру пробоотборника на полость 38 пробы, предназначенную для сбора пробы текучей среды, и буферную полость 40, содержащую буферную текучую среду. Когда текучая среда втекает в полость пробы, поршень со скольжением перемещается внутри камеры пробоотборника под действием давлений в полостях. Текучая среда начинает заполнять камеру и разделяться. Как показано, обычно загрязнения и/или загрязненная текучая среда 37 отделяется послойно от чистой пластовой текучей среды 39. В зависимости от свойств текучей среды загрязненная текучая среда может оседать на дно, как показано на фиг.3A, или подниматься кверху, как показано на фиг.3B.

Камера пробоотборника, показанная на фиг.3A, снабжена единственной выкидной линией 27B для прохождения текучей среды в и выхода из камеры пробоотборника. После разделения текучей среды чистая текучая среда, показанная поднявшейся кверху на фиг.3A, может быть откачена из камеры 28B пробоотборника в камеру 28A пробоотборника для сбора в ней (фиг.2). После завершения перемещения оставшаяся загрязненная текучая среда может быть откачена через сбросную выкидную линию 34 в ствол скважины. Анализатор 32 текучей среды может быть использован для контроля текучей среды, закаченной в камеру 28A пробоотборника, для подтверждения того, что она представляет собой достаточно чистую текучую среду. Как только будет обнаружена загрязненная текучая среда, перемещение может быть закончено. Перемещение между многочисленными камерами можно повторять до тех пор, пока не накопится удовлетворяющая требованиям текучая среда.

Камера пробоотборника на фиг.3B также снабжена единственной выкидной линией 27B, предназначенной для прохождения текучей среды в и из камеры пробоотборника. После разделения текучей среды загрязненная текучая среда, показанная поднявшейся кверху на фиг.3B, может быть откачен из камеры 28B пробоотборника в ствол скважины через сбросную линию 34. При желании сбросную выкидную линию можно развести так, чтобы загрязненная текучая среда проходила через анализатор 32 текучей среды с целью контроля загрязненной текучей среды. После того как обнаружено достаточное количество чистой текучей среды, перемещение можно завершить. Процессы перемещения и/или сброса можно повторять до тех пор, пока не будет собрано необходимое количество текучей среды.

На фиг.4 показана камера 28B пробоотборника, снабженная второй выкидной линией 42 для избирательного удаления текучих сред. Когда имеются вторая выкидная линия и клапан, текучая среда может проходить в полость пробы по выкидной линии 27В и удаляться через выкидную линию 42. Предпочтительно, чтобы при удалении пластовой текучей среды выкидная линия 42, показанная на фиг.4, была снабжена патрубком 44, предназначенным для облегчения захвата и вывода текучей среды в выкидную линию 42. Чтобы обеспечивать удаление необходимого количества текучей среды, патрубок можно располагать в камере пробоотборника на различных уровнях. В этом случае, если чистая текучая среда опускается на дно полости пробы, патрубок может быть опущен до желаемого уровня, чтобы удалить нижний слой текучей среды, в данном случае чистая текучая среда.

Камера пробоотборника может быть снабжена датчиками 46, размещенными вдоль стенки камеры пробоотборника. Эти датчики могут быть использованы для определения местоположения текучей среды и/или различных ее свойств (то есть плотности, вязкости) в камере пробоотборника. Датчики также могут быть использованы для определения местоположения поршней, выкидных линий, патрубков или других изделий внутри камеры.

Для ввода или удаления текучей среды в камере пробоотборника могут быть размещены выкидные линии различных конфигураций. Хотя выкидная линия 27B показана находящейся в левой верхней части камеры, выкидные линии могут быть расположены в различных местах для содействия процессам отбора пробы и разделения. Как показано на фиг.5, текучая среда входит в камеру 28B пробоотборника по выкидной линии 27B. Вторая выкидная линия 48 проходит через поршень и буферную полость. Этим обеспечивается возможность удаления текучей среды со дна полости 38 пробы по выкидной линии 48. Предпочтительно, чтобы по мере перемещения поршня вторая выкидная линия перемещалась вместе с поршнем. Как показано, выкидная линия может быть телескопической для обеспечения возможности вытягивания и втягивания трубы вместе с поршнем.

Камера пробоотборника еще одной конфигурации показана на фиг.6. Как описывалось выше, скважинным прибором может быть буровой инструмент. В таком случае (и в некоторых других) инструмент вращается и обычно к полости пробы прикладывается центростремительная сила. Эта центростремительная сила вращает текучую среду и обуславливает его разделение на радиальные слои. Как показано на фиг.6, в центральной части полости пробы может быть чистая текучая среда 39A, тогда как внешний слой 39B является загрязненным (или наоборот, что не показано). Выкидные линии можно разместить таким образом, чтобы одна выкидная линия, например выкидная линия 27B, была расположена в центре, тогда как вторая выкидная линия 42 расположена в или вблизи внешнего слоя. Можно представить себе другие конфигурации.

Для содействия процессу разделения могут быть использованы различные способы. Например, как показано на фиг.7, в полость пробы может быть помещена галька 50 для содействия притягиванию некоторых текучих сред ко дну камеры. Кроме того, различные химические добавки, такие как деэмульгаторы (например натрия лаурилсульфат) могут быть введены в текучую среду для содействия разделению. Разделению также может способствовать перемешивание, например, при центростремительном вращении прибора.

На фиг.8 показан другой вариант осуществления скважинного прибора 10а, выполненный так же, как и скважинный прибор 10, показанный на фиг.2, за исключением того, что он представляет собой буровой инструмент, включающий систему 18а для отбора проб пластовой текучей среды с несколькими камерами 28В пробоотборника и газовым аккумулятором 52. Кроме того, перекомпонованы различные компоненты и модули. Может быть использован ряд конфигураций скважинного прибора 10а. В случаях, когда прибор выполнен модульным, модули могут быть перекомпонованы, как это необходимо, чтобы обеспечить возможность выполнения в скважинном приборе ряда других операций. Многочисленные камеры могут быть использованы с рядом вариантов клапанной системы. При желании для обеспечения возможности контроля и перемещения могут быть установлены анализатор текучей среды и насос.

Прибор может быть снабжен дополнительными устройствами, например газовым аккумулятором 52, способным обеспечивать сбор и объединение газовых пузырьков. После того как газ собран в достаточной степени, для большей эффективности разделения и удаления его можно перемещать как один крупный пузырь.

Кроме того, прибор может быть снабжен датчиками на различных местах, например в камере пробоотборника, как показано на фиг.4, или на различных местах в системе отбора проб. Посредством этих датчиков можно измерять ряд данных, например плотность и удельное сопротивление текучей среды. Эта информация может быть использована сама по себе или в сочетании с другой информацией, такой как информация, вырабатываемая анализатором текучей среды. Данные, собранные в приборе, могут быть переданы на поверхность и/или использованы для принятия решения относительно ствола скважины. Для достижения этих возможностей могут быть предусмотрены соответствующие вычислительные средства.

Хотя изобретение описано применительно к ограниченному числу вариантов осуществления, специалистам в области техники, к которой относится изобретение, извлекающим выгоду из этого раскрытия, должно быть понятно, что могут быть разработаны другие варианты осуществления, которые не отклоняются от объема изобретения, раскрытого в настоящей заявке. Поэтому объем изобретения должен ограничиваться только приложенной формулой изобретения.

Похожие патенты RU2373393C2

название год авторы номер документа
СИСТЕМА ГИДРАВЛИЧЕСКОГО НАСОСА ДЛЯ СКВАЖИННОГО ИНСТРУМЕНТА (ВАРИАНТЫ), СПОСОБ УПРАВЛЕНИЯ УКАЗАННЫМ НАСОСОМ И СПОСОБ ЭКСПЛУАТАЦИИ НАСОСНОЙ СИСТЕМЫ ДЛЯ СКВАЖИННОГО ИНСТРУМЕНТА 2007
  • Цигленек Райнхарт
  • Вильяреаль Стивен Дж
  • Хефель Альберт
  • Свинберн Питер
  • Стакер Майкл Дж
  • Фоллини Жан-Марк
RU2442021C2
СПОСОБЫ И УСТРОЙСТВО ДЛЯ ПЛАНИРОВАНИЯ И ДИНАМИЧЕСКОГО ОБНОВЛЕНИЯ ОПЕРАЦИЙ ОТБОРА ПРОБ ВО ВРЕМЯ БУРЕНИЯ В ПОДЗЕМНОМ ПЛАСТЕ 2009
  • Поп Джулиан Дж.
  • Чан Юн
RU2502870C2
ОЦЕНКА ПАРАМЕТРОВ ПРОДУКТИВНОГО ПЛАСТА ПРИ БУРЕНИИ 2006
  • Вильяреаль Стивен Дж.
  • Цигленек Райнхарт
  • Стакер Майкл Дж.
  • Дуонг Кханх
RU2416720C2
НАПРАВЛЕННЫЙ ОТБОР ОБРАЗЦОВ ПЛАСТОВЫХ ФЛЮИДОВ 2010
  • Поп Джулиан Дж.
  • Корр Пьер-Ив
RU2556583C2
СКВАЖИННЫЙ БУРИЛЬНЫЙ ИНСТРУМЕНТ, ИНСТРУМЕНТ ДЛЯ ОЦЕНКИ ПАРАМЕТРОВ ПЛАСТА И СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ ПЛАСТА ПОСРЕДСТВОМ СКВАЖИННОГО ИНСТРУМЕНТА 2006
  • Лонгфилд Колин
RU2404361C2
УСТРОЙСТВО И СПОСОБЫ ОТБОРА ОБРАЗЦОВ ПЛАСТОВОЙ ТЕКУЧЕЙ СРЕДЫ 2007
  • Зазовский Александр Ф.
  • Лонгфилд Колин
  • Поп Джулиан Дж.
  • Циммерман Томас Х.
  • Шервуд Джон Д.
  • Берджесс Кит А.
RU2436951C2
УЗЕЛ ЗОНДА (ВАРИАНТЫ) И СПОСОБ ОТБОРА ПРОБЫ ТЕКУЧЕЙ СРЕДЫ ИЗ ПОДЗЕМНОГО ПЛАСТА С ИСПОЛЬЗОВАНИЕМ УЗЛА ЗОНДА 2005
  • Нолд Раймонд В. Iii
  • Зазовский Александр Ф.
  • Эрвин Стив
  • Дел Кампо Кристофер С.
  • Брике Стефан
RU2379506C2
СПОСОБ ПРИОРИТИЗАЦИИ ДАННЫХ ОТБОРА ПРОБ 2012
  • Вильяреаль Стивен
  • Поп Джулиан
  • Хак Шахид А.
RU2598390C2
УСТРОЙСТВО И СПОСОБ ДЛЯ ВЫПОЛНЕНИЯ ИСПЫТАНИЙ ДЛЯ ОПРЕДЕЛЕНИЯ ПЛАСТОВОГО НАПРЯЖЕНИЯ НА НЕОБСАЖЕННОМ УЧАСТКЕ СТВОЛА СКВАЖИНЫ 2019
  • Энг, Ханс Петтер
RU2761075C1
СИСТЕМА И СПОСОБ ДЛЯ ОТБОРА ТЕКУЧЕЙ СРЕДЫ ИЗ СТВОЛА СКВАЖИНЫ 2009
  • Корр Пьер-Ив
  • Хэрриган Эдвард
  • Зазовский Александр Ф.
  • Брике Стефан
  • Йелделл Стефен
  • Сонне Карстен
  • Метайер Стефан
RU2503794C2

Иллюстрации к изобретению RU 2 373 393 C2

Реферат патента 2009 года СИСТЕМА И СПОСОБ ДЛЯ ОТБОРА ПРОБ ПЛАСТОВОЙ ТЕКУЧЕЙ СРЕДЫ

Изобретение относится к нефтедобывающей промышленности и предназначено для оценки пласта, через который проходит ствол скважины. Техническим результатом изобретения является обеспечение возможности удаления загрязненной текучей среды из скважинного прибора и извлечения из подземного пласта более чистой текучей среды. Для этого разработаны способ, скважинный инструмент и система для отбора проб пластовой текучей среды. Пластовую текучую среду извлекают из подземного пласта в скважинный прибор и собирают в камере пробоотборника. Отводящая выкидная линия в рабочем состоянии соединена с камерой пробоотборника для избирательного удаления загрязненной или чистой части пластовой текучей среды из камеры пробоотборника. В результате загрязнение удаляется из камеры пробоотборника. При этом чистая часть пластовой текучей среды может быть пропущена в другую камеру пробоотборника для сбора или загрязненная часть пластовой текучей среды может быть сброшена в ствол скважины. 3 н. и 35 з.п. ф-лы, 9 ил.

Формула изобретения RU 2 373 393 C2

1. Скважинный инструмент для отбора проб пластовой текучей среды, содержащий зонд для извлечения пластовой текучей среды из подземного пласта в скважинный прибор, основную выкидную линию, проходящую от зонда, для прохождения пластовой текучей среды из зонда в скважинный прибор, по меньшей мере, одну камеру пробоотборника, в рабочем состоянии соединенную с основной выкидной линией для сбора пластовой текучей среды и содержащую загрязненную часть и чистую часть пластовой текучей среды, и отводящую выкидную линию, в рабочем состоянии соединенную с камерой пробоотборника для избирательного удаления из камеры пробоотборника загрязненной части или чистой части пластовой текучей среды, обеспечивая удаление загрязнения из пластовой текучей среды.

2. Инструмент по п.1, выбранный из группы, состоящей из прибора, спускаемого в скважину на тросе, бурового инструмента, прибора гибкой насосно-компрессорной колонны и их комбинаций.

3. Инструмент по п.1, содержащий первую камеру пробоотборника и вторую камеру пробоотборника, и передаточную выкидную линию для прохождения, по меньшей мере, части пластовой текучей среды из первой камеры пробоотборника во вторую камеру пробоотборника.

4. Инструмент по п.1, в котором отводящая выкидная линия в рабочем состоянии соединена со второй камерой пробоотборника для прохождения, по меньшей мере, части пластовой текучей среды из первой камеры пробоотборника во вторую камеру пробоотборника.

5. Инструмент по п.1, дополнительно содержащий сбросную выкидную линию для прохождения текучей среды из основной выкидной линии в ствол скважины.

6. Инструмент по п.1, дополнительно содержащий датчики для определения параметров пласта.

7. Инструмент по п.6, в котором датчики расположены в, по меньшей мере, одной из выкидных линий в, по меньшей мере, одной из камер пробоотборника и в их комбинациях.

8. Инструмент по п.1, дополнительно содержащий анализатор текучей среды, способный контролировать загрязнение пластовой текучей среды.

9. Инструмент по п.1, дополнительно содержащий сепаратор текучей среды.

10. Инструмент по п.9, в котором сепаратор текучей среды представляет собой одно из гальки, химикатов, катализаторов, активаторов, деэмульгаторов и комбинаций из них.

11. Инструмент по п.1, в котором, по меньшей мере, одна камера пробоотборника имеет поршень, перемещаемый в ней со скольжением и разделяющий камеру пробоотборника на полость пробы и буферную полость.

12. Инструмент по п.1, в котором отводящая выкидная линия проходит из, по меньшей мере, одной камеры пробоотборника в ствол скважины для сброса загрязненной текучей среды из полости пробы в ствол скважины.

13. Инструмент по п.1, в котором отводящая выкидная линия проходит из, по меньшей мере, одной камеры пробоотборника в сборную камеру для сбора пластовой текучей среды.

14. Инструмент по п.1, в котором отводящая выкидная линия снабжена патрубком, расположенным в камере пробоотборника, для выборочного удаления из нее, по меньшей мере, части текучей среды.

15. Инструмент по п.1, дополнительно содержащий газовый аккумулятор, в рабочем состоянии соединенный с основной выкидной линией и способный обеспечивать объединение газовых пузырьков друг с другом до прохождения в камеру пробоотборника.

16. Способ отбора проб пластовой текучей среды из подземного пласта посредством скважинного прибора, включающий следующие операции:
расположение скважинного прибора в стволе скважины,
установление сообщения по текучей среде между скважинным прибором и
окружающим пластом,
извлечение текучей среды из пласта в скважинный прибор,
сбор в, по меньшей мере, одной камере пробоотборника пластовой текучей среды, включающей загрязненную часть и чистую часть,
вытягивание из камеры пробоотборника выбранной одной из загрязненной
части и чистой части пластовой текучей среды.

17. Способ по п.16, дополнительно включающий отделение чистой части от загрязненной части пластовой текучей среды.

18. Способ по п.17, в котором пластовую текучую среду отделяют путем вытягивания загрязненной части пластовой текучей среды из камеры пробоотборника.

19. Способ по п.18, в котором загрязненную часть пластовой текучей среды сбрасывают в ствол скважины.

20. Способ по п.17, в котором пластовую текучую среду отделяют с помощью одного из обеспечения его осаждения, перемешивания, добавок и их комбинаций.

21. Способ по п.20, в котором добавки представляют собой гальку, деэмульгаторы и их комбинации.

22. Способ по п.17, в котором пластовую текучую среду отделяют путем перекачивания ее чистой части в сборную камеру.

23. Способ по п.16, дополнительно включающий идентификацию чистой части или загрязненной части пластовой текучей среды или их комбинаций.

24. Система для удаления загрязнения из пластовой среды, собранной посредством скважинного прибора из подземного пласта, содержащая, по меньшей мере, одну камеру пробоотборника, расположенную в скважинном приборе для приема пластовой текучей среды, и отводящую выкидную линию, в рабочем состоянии соединенную с камерой пробоотборника для избирательного удаления из камеры пробоотборника загрязненной части или чистой части пластовой текучей среды, обеспечивая удаление загрязнения из пластовой текучей среды.

25. Система по п.24, в которой скважинный прибор выбран из группы, состоящей из прибора, спускаемого в скважину на тросе, бурового инструмента, прибора гибкой насосно-компрессорной колонны и их комбинаций.

26. Система по п.24, содержащая первую камеру пробоотборника и вторую камеру пробоотборника, и передаточную выкидную линию для прохождения, по меньшей мере, части пластовой текучей среды из первой камеры пробоотборника во вторую камеру пробоотборника.

27. Система по п.24, в которой отводящая выкидная линия в рабочем состоянии соединена со второй камерой пробоотборника для прохождения, по меньшей мере, части пластовой текучей среды из первой камеры пробоотборника во вторую камеру пробоотборника.

28. Система по п.24, дополнительно содержащая сбросную выкидную линию для прохождения текучей среды из основной выкидной линии в ствол скважины.

29. Система по п.24, дополнительно содержащая датчики для определения параметров пласта.

30. Система по п.29, в которой датчики расположены в, по меньшей мере, одной из выкидных линий в, по меньшей мере, одной из камер пробоотборника и в их комбинациях.

31. Система по п.24, дополнительно содержащая анализатор текучей среды, способный контролировать загрязнение пластовой текучей среды.

32. Система по п.24, дополнительно содержащая сепаратор текучей среды.

33. Система по п.32, в которой сепаратор текучей среды представляет собой одно из: гальки, химикатов, катализаторов, активаторов, деэмульгаторов и комбинаций из них.

34. Система по п.24, в которой, по меньшей мере, одна камера пробоотборника имеет поршень, перемещаемый в ней со скольжением и разделяющий камеру пробоотборника на полость пробы и буферную полость.

35. Система по п.24, в которой отводящая выкидная линия проходит из, по меньшей мере, одной камеры пробоотборника в ствол скважины для сброса загрязненной текучей среды из полости пробы в ствол скважины.

36. Система по п.24, в которой отводящая выкидная линия проходит из, по меньшей мере, одной камеры пробоотборника в сборную камеру для сбора пластовой текучей среды.

37. Система по п.24, в которой отводящая выкидная линия снабжена патрубком, расположенным в камере пробоотборника, для выборочного удаления из нее текучей среды.

38. Система по п.24, дополнительно содержащая газовый аккумулятор, соединенный с основной выкидной линией и способный обеспечивать объединение газовых пузырьков друг с другом до прохождения в камеру пробоотборника.

Документы, цитированные в отчете о поиске Патент 2009 года RU2373393C2

US 6301959 B1, 16.10.2001
Способ исследования пластов в необсаженных скважинах 1981
  • Аглиуллин Минталип Мингалеевич
  • Исякаев Венер Ахтямович
  • Пашали Андрей Иванович
  • Тюменев Лев Николаевич
SU964124A1
US 4936139 A, 26.06.1990
Способ отбора проб бурового шлама и система для его осуществления 1990
  • Караджаев Амирулла Талыб-Оглы
SU1809030A1
Устройство для исследования скважин и опробывания пластов 1977
  • Миронов Вячеслав Андреевич
  • Бродский Петр Абрамович
  • Ильина Зинаида Ильинична
  • Власкин Анатолий Ефимович
  • Гаврилов Станислав Хрисанфович
  • Павлычев Константин Федорович
  • Шерстнев Сергей Николаевич
SU735759A1
Многокамерный пробоотборник скважинной жидкости 1983
  • Аксельрод Самуил Михайлович
  • Гаджиев Сабир Али Гейдар Оглы
  • Гамазов Олег Антонович
  • Степанян Владимир Амбарцумович
  • Черняев Александр Петрович
SU1154443A1
Устройство скважинной пенетрации и пробоотбора 1990
  • Агаронов Александр Сергеевич
  • Колоколова Алла Николаевна
  • Слонимский Леонид Давидович
  • Перевозчиков Александр Михайлович
SU1798646A1
ТРЕХФАЗНЫЙ СЕПАРАТОР 1996
  • Редькин И.И.
  • Редькин В.И.
  • Кулакова Т.А.
RU2114678C1
ГЛУБИННЫЙ ПРОБООТБОРНИК 1996
  • Гриценко А.Г.
  • Тер-Саакян С.А.
  • Глинский М.Л.
  • Татарчук Ю.С.
  • Панин Н.М.
RU2108461C1
US 5303775 A1, 19.04.1994
US 6178815 B1, 30.01.2001.

RU 2 373 393 C2

Авторы

Ногейра Матеус

Данлэп Джеймс Дж.

Карнеги Эндрю Дж.

Дюран Алехандро

Хэрриган Эдвард

Васкес Рикардо

Адур Николас

Даты

2009-11-20Публикация

2004-10-14Подача