СПОСОБ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН С СУБГОРИЗОНТАЛЬНЫМ И ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ СТВОЛА Российский патент 2010 года по МПК E21B47/00 

Описание патента на изобретение RU2386808C1

Изобретение относится к газовой промышленности и может быть использовано при проведении газодинамических исследований газовых и газоконденсатных скважин с субгоризонтальным и горизонтальным окончанием ствола.

Известен способ проведения исследований газовых и газоконденсатных скважин на стационарных режимах фильтрации с использованием диафрагменного измерителя критического течения (ДИКТ) [Гриценко А.И., Алиев З.С., Ермилов О.М., Ремизов В.В., Зотов Г.А. Руководство по исследованию скважин. - М.: Наука, 1995, стр.21-22, 175-178, 487-489.], включающий остановку скважины, замер статического давления на устье и пластового давления, пуск скважины на факельную линию с определением дебита газа и конденсата на нескольких режимах работы с использованием ДИКТ, замер динамического давления на устье и забойного давления на каждом режиме после их стабилизации, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме, пуск скважины в газосборный коллектор, определение коэффициентов фильтрационного сопротивления A и B.

Существенным недостатком данного способа являются выпуски газа в атмосферу, исчисляемые миллионами кубометров, вследствие значительного времени стабилизации измеряемых параметров.

Наиболее близким по технической сущности (прототип) является изохронный способ исследований [Гриценко А.И., Алиев З.С., Ермилов О.М., Ремизов В.В., Зотов Г.А. Руководство по исследованию скважин. - М.: Наука, 1995, стр.234-241.], включающий остановку скважины, замер статического давления на устье и пластового давления, пуск скважины на факельную линию с определением дебита газа и конденсата на нескольких режимах работы одинаковой продолжительности по времени с различными дебитами, замер динамического давления на устье и забойного давления на каждом режиме после их стабилизации, остановку скважины после каждого режима, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме, пуск скважины в газосборный коллектор и замер рабочих параметров после их стабилизации, определение коэффициентов фильтрационного сопротивления А и В. Обязательным условием исследования скважины изохронным методом является полное восстановление забойного давления между режимами, которое достигается остановкой скважины.

Суть изохронного способа заключается в том, что радиус дренируемой зоны пласта зависит не от дебита, а от безразмерного времени, определяемого из измеряемых параметров по формуле: где k и µ - коэффициенты проницаемости пласта и вязкости газа; PCP - среднее пластовое давление; m - пористость коллектора, доли единицы; RC - радиус скважины; t - время работы скважины после ее пуска. Принятое условие означает, что для одного и того же отрезка времени независимо от дебита будет дренироваться зона одинакового радиуса. В этом случае так же, как и при полной стабилизации забойного давления и дебита, угол наклона индикаторной кривой, построенной в координатах ΔP2/Q от Q, остается постоянным в диапазоне измеряемых дебитов.

Для двучленного закона фильтрации газа к скважине результаты исследования изохронным методом обрабатываются по формуле: , где PПЛ - забойное давление, соответствующее времени tP; tP - время работы скважины, не превышающее 60 минут и одинаковое на всех режимах исследования скважины кроме тех, на которых достигается стабилизация измеряемых параметров; Q(tP) - дебит скважины, соответствующий времени tp; a(tp) b(tp) - коэффициенты фильтрационного сопротивления.

Результаты замеров нестабилизированных значений параметров фиксируют в процессе исследования, после чего строят линейную регрессионную зависимость в координатах

от Q(tp). Коэффициент a(tP) определяют как отрезок, отсекаемый на оси ординат, а коэффициент b(tP) определяют как тангенс угла наклона полученной прямой. Для определения истинного значения коэффициента aИС используют два метода.

Первый. При известном коэффициенте b(tP)=B определяют aИС=A, соответствующее стабилизированным величинам забойных давлений и дебитов. Для этого на одном из режимов достигают их полной стабилизации, фиксируют их значения и вычисляют величину aИС из уравнения , где b - коэффициент при квадратичном члене уравнения притока газа к скважине; - забойное давление после полной стабилизации работы скважины на одном из режимов; Q(tCT) - стабилизированный дебит скважины; tCT - время, необходимое для полной стабилизации давления и дебита.

Второй. Зная величину a(tp), соответствующую нестабилизированным значениям забойных давлений и дебитов, которые измеряют, значение коэффициента aИС определяют из их измеренных значений по формуле aИС= a(tp)+βlntCT/tp, где β -тангенс угла наклона регрессионной прямой, проведенной по точкам конечного участка кривой восстановления давления, построенной в координатах от lgt.

Существенным недостатком способа является значительное время проведения исследований, обусловленное длительностью периода стабилизации рабочих параметров на режиме и восстановления давления при остановке скважины между режимами.

Ориентировочно время полной стабилизации забойного давления и дебита можно рассчитать по следующей формуле (в секундах) [Гриценко А.И, Алиев З.С., Ермилов О.М., Ремизов В.В., Зотов Г.А. Руководство по исследованию скважин. - М.: Наука, 1995, стр.179.]: где æ - коэффициент пьезопроводности; C - численный коэффициент, изменяющийся в пределах 0,122≤C≤0,350; v=[kв.cp/kг]0.5 - параметр анизотропии пласта.

Коэффициент пьезопроводности определяется по формуле: æ=k·Pпл/(mµ), где k - проницаемость пласта, м2; Pпл - пластовое давление, Па; m - пористость пласта; µ - коэффициент вязкости газа, Па·с.

Параметр радиуса контура питания Rk зависит от формы зоны дренирования и удельных запасов, приходящихся на горизонтальную скважину. В таблице приведены расчетное время стабилизации t для различных значений Rk и проницаемости k.

Таблица Радиус контура питания Rk, м Проницаемость k, 10-12 м2 Пористость m в долях единиц Коэффициент вязкости µ,10-3 Па·с Пластовое давление Pпл, 106 МПа t в сутках при C=0,350 ν=0,3162 ν=l 1000 0,5 0,25 0,012 11,7 6,568 2,077 1,0 -//- -//- -//- 3,282 1,038 1500 0,5 0,25 0,012 11,7 14,769 4,670 1,0 -//- -//- -//- 7,384 2,335 2000 0,5 0,25 0,012 11,7 26,201 8,285 1,0 -//- -//- -//- 13,102 4,143

Предлагаемый способ проведения исследований газовых и газоконденсатных скважин позволяет устранить указанные недостатки. Заявляемый способ включает замер рабочих параметров при длительной работе скважины в газосборный коллектор, замер параметров работы скважины на нескольких режимах одинаковой продолжительности по времени с различными дебитами, однократную остановку скважины до полной стабилизации устьевого давления, снятие кривой восстановления давления, замер пластового давления, пуск скважины в газосборный коллектор, определение коэффициентов фильтрационного сопротивления A и B.

Заявляемый способ отличается от известных тем, что исследование проводится непрерывно без остановки скважины между режимами. На двух режимах, рабочем, при эксплуатации скважины в газосборный коллектор в начале испытаний, и с максимальным дебитом, достигают полной стабилизация замеряемых параметров.

Суть предлагаемого способа заключается в том, что при длительной работе скважины на рабочем режиме радиус контура питания стабилизируется и остается постоянным. Исследование на режимах с дебитом, отличным от рабочего, проводят в течение общего отрезка времени, который в 10-100 раз меньше времени работы скважины в газосборный коллектор и не оказывает существенного влияния на величину контура питания.

Коэффициент B определяют как тангенс угла наклона регрессионной прямой, проведенной по результатам замеров стабилизированных значений параметров, фиксируемых на двух режимах, при работе скважины в газосборный коллектор в начале исследования и с максимальным дебитом, построенной в координатах от Q(tCT). Коэффициенты a(tP) и aИС, которое равно A, определяют так же, как и при изохронном методе.

Похожие патенты RU2386808C1

название год авторы номер документа
СПОСОБ ОПТИМИЗАЦИИ ПЕРИОДИЧНОСТИ ГАЗОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН НА НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА 2017
  • Арно Олег Борисович
  • Ахметшин Баязетдин Саяхетдинович
  • Меркулов Анатолий Васильевич
  • Арабский Анатолий Кузьмич
  • Кирсанов Сергей Александрович
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
  • Кожухарь Руслан Леонидович
RU2661502C1
СПОСОБ ГРУППОВОГО ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ КУСТОВЫХ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА СТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ 2007
  • Андреев Олег Петрович
  • Зинченко Игорь Александрович
  • Кирсанов Сергей Александрович
  • Ахмедсафин Сергей Каснулович
RU2338877C1
СПОСОБ АВТОМАТИЧЕСКОГО ПРОСЛУШИВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА 2016
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Меркулов Анатолий Васильевич
  • Кирсанов Сергей Александрович
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
  • Шарафутдинов Руслан Фархатович
  • Левинский Иван Юрьевич
RU2645055C1
Способ исследования скважин при кустовом размещении 2016
  • Шулятиков Владимир Игоревич
  • Плосков Александр Александрович
  • Перемышцев Юрий Алексеевич
  • Изюмченко Дмитрий Викторович
  • Непомнящий Леонид Яковлевич
  • Медко Владимир Васильевич
RU2644997C2
Способ исследования скважин при стационарных и не стационарных режимах работы 2020
  • Уткина Наталья Николаевна
  • Галиос Дмитрий Александрович
  • Козлов Максим Сергеевич
RU2752885C1
СПОСОБ ИССЛЕДОВАНИЯ ГАЗОВЫХ СКВАЖИН ПРИ НЕСТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ 1992
  • Тищенко Василий Иванович[Ua]
RU2067664C1
Способ определения коэффициентов фильтрационных сопротивлений газовых и газоконденсатных скважин 1989
  • Гильфанов Марат Ахматфаязович
  • Гурленов Евгений Михайлович
SU1710718A1
Способ проведения газодинамических исследований газовых и газоконденсатных скважин 2023
  • Киселёв Михаил Николаевич
  • Михалёв Александр Анатольевич
  • Половинкин Дмитрий Викторович
  • Коваленко Александр Викторович
  • Коц Евгений Валерьевич
RU2826995C1
Способ определения коэффициентов фильтрационных сопротивлений газоконденсатной скважины 2023
  • Шиков Илья Александрович
  • Жданов Кирилл Юрьевич
RU2812730C1
Способ газодинамического исследования скважины для низкопроницаемых коллекторов 2016
  • Дербенев Владимир Александрович
  • Жирнов Роман Анатольевич
  • Люгай Антон Дмитриевич
  • Люгай Юлия Станиславовна
  • Ляшенко Алексей Владимирович
  • Сутырин Александр Викторович
  • Чудин Ян Сергеевич
RU2641145C1

Реферат патента 2010 года СПОСОБ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН С СУБГОРИЗОНТАЛЬНЫМ И ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ СТВОЛА

Изобретение относится к газовой промышленности и может быть использовано при проведении газодинамических исследований газовых и газоконденсатных скважин с субгоризонтальным и горизонтальным окончанием ствола. Техническим результатом является снижение затрат рабочего времени на проведение исследования, повышение точности результатов исследования. Для этого в процессе исследования проводят замер забойного давления и дебита при длительной работе скважины в газосборный коллектор. Замеряют параметры работы скважины при их полной стабилизации на режиме с максимальным дебитом. Проводят замер параметров работы скважины на нескольких режимах одинаковой продолжительности по времени с различными дебитами. При этом исследование проводят непрерывно, без остановки скважины между режимами. Останавливают скважину до полной стабилизации устьевого давления. Снимают кривую восстановления давления, замеряют пластовое давление. Проводят пуск скважины в газосборный коллектор. Определяют коэффициенты фильтрационного сопротивления А и В.

Формула изобретения RU 2 386 808 C1

Способ проведения исследований газовых и газоконденсатных скважин с субгоризонтальным и горизонтальным окончанием ствола, включающий замер рабочих параметров при длительной работе скважины в газосборный коллектор, замер параметров работы скважины на нескольких режимах одинаковой продолжительности по времени с различными дебитами, однократную остановку скважины до полной стабилизации устьевого давления, замер пластового давления, пуск скважины в газосборный коллектор, определение коэффициентов фильтрационного сопротивления А и В, отличающийся тем, что исследование производят непрерывно, без остановки скважины между режимами, помимо режима соответствующего работе скважины в газосборный коллектор, на режиме с максимальным дебитом достигают полной стабилизации замеряемых параметров и определяют коэффициент фильтрационного сопротивления В по результатам замеров стабилизированных значений параметров, фиксируемых на двух режимах, с рабочим дебитом, соответствующим эксплуатации скважины в газосборный коллектор в начале исследования и с максимальным дебитом.

Документы, цитированные в отчете о поиске Патент 2010 года RU2386808C1

ГРИЦЕНКО А.И
Руководство по исследованию скважин
- М.: Наука, 1995, с.234-247
СПОСОБ ГРУППОВОГО ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ КУСТОВЫХ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА СТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ 2007
  • Андреев Олег Петрович
  • Зинченко Игорь Александрович
  • Кирсанов Сергей Александрович
  • Ахмедсафин Сергей Каснулович
RU2338877C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПРИЗАБОЙНОЙ ЗОНЫ ГАЗОВОЙ СКВАЖИНЫ 1998
  • Кононов В.И.
  • Березняков А.И.
  • Дун Л.А.
  • Немировский И.С.
  • Забелина Л.С.
  • Попов А.П.
  • Смолов Г.К.
RU2151869C1
СПОСОБ ИССЛЕДОВАНИЯ ГАЗОВЫХ СКВАЖИН ПРИ НЕСТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ 1992
  • Тищенко Василий Иванович[Ua]
RU2067664C1
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК СКВАЖИНЫ, ПРИЗАБОЙНОЙ ЗОНЫ И ПЛАСТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Чикин А.Е.
RU2179637C1
US 5337821 А, 16.08.1994.

RU 2 386 808 C1

Авторы

Андреев Олег Петрович

Зинченко Игорь Александрович

Кирсанов Сергей Александрович

Даты

2010-04-20Публикация

2009-02-12Подача