СПОСОБ ГРУППОВОГО ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ КУСТОВЫХ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА СТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ Российский патент 2008 года по МПК E21B47/10 E21B43/34 

Описание патента на изобретение RU2338877C1

Изобретение относится к газовой промышленности и может быть использовано при проведении газодинамических, геофизических и специальных исследований газовых и газоконденсатных скважин, преимущественно для исследования скважин, сгруппированных в эксплуатационные кусты.

Известен способ проведения исследований газовых и газоконденсатных скважин с организацией контроля разработки залежи при различных условиях питания, включающий контроль депрессии за контуром залежи по пьезометрическим скважинам, размещенным в зонах с различными условиями питания и в контуре залежи по наблюдательным скважинам, при этом наблюдательные скважины размещают попарно с пьезометрическими скважинами на участках с различными граничными условиями питания, причем в скважинах замеряют давление и контролируют режим разработки залежи в каждой зоне (см. патент RU №2053350, кл. Е21В 43/00, 27.01.1996).

Данный способ позволяет контролировать темп снижения давления залежи. Однако для реализации данного способа необходимо бурение специальных скважин, а именно пьезометрических и наблюдательных, и размещение их в строго определенных местах, что приводит к значительным затратам и не дает четкого представления о состоянии конкретных скважин куста, что сужает эффективность данного способа исследования.

Наиболее близким по технической сущности к заявляемому изобретению является способ проведения исследований газовых и газоконденсатных скважин на стационарных режимах фильтрации, включающий остановку скважины, замер статического давления на устье и пластового давления, пуск скважины в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В (см. авторское свидетельство SU №1710718, кл. Е21В 47/10, 07.02.1992).

Существенным недостатком данного способа является невозможность проведения исследований на режимах с дебитами, существенно превышающими рабочий, т.е. дебит, с которым скважина работает в газосборном коллекторе совместно с остальными скважинами куста. Это обусловлено относительно постоянной величиной давления в газосборном коллекторе, зависящей от уровня отборов газа и режимов работы всех скважин куста. Другим недостатком способа является неточность определения величины пластового давления, связанная с взаимовлиянием работающих скважин при их кустовом размещении. Так, при пуске каждой скважины вокруг нее образуется непрерывно растущая область распределения давления, имеющая форму логарифмических кривых, начало которых расположено у стенки возмущающей скважины, а конец с течением времени удаляется от нее. Внешняя граница возмущенной области служит контуром питания скважины на данный момент времени с начальным пластовым давлением и называется приведенным радиусом влияния. В однородном пласте область влияния одиночной скважины имеет форму круга. При одновременной работе с одинаковым постоянным дебитом равномерно расположенных в однородном пласте скважин образуется установившаяся область влияния, которую можно заменить эквивалентным кругом (см., например, Гриценко А.И. и др. «Руководство по исследованию скважин», Москва, Наука, 1995, с.180-181). Таким образом, при остановке одной из скважин куста замеренное давление является не текущим пластовым, а динамическим, величина которого определяется конкретным расположением и дебитами скважин куста.

Задачей, на решение которой направлено настоящее изобретение, является возможность проведения исследования нескольких скважин одновременно с исключением влияния расположения скважин на получаемый результат.

Техническим результатом, достигаемым от реализации изобретения, является повышение точности получаемых данных и сокращение сроков проведения исследования всех скважин куста.

Указанная задача решается, а технический результат достигается тем, что способ группового проведения исследований газовых и газоконденсатных скважин на стационарных режимах фильтрации включает остановку скважины, замер статического давления на устье и пластового давления, пуск скважины в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В, при этом исследуемые скважины разделяют на пары, имеющие максимальную степень наложения контуров питания, и относят каждую из скважин пары к разным группам, одновременно исследуют две группы скважин, состоящих из одноименных пар, причем одну группу на режимах обратного хода с уменьшением дебита до полной остановки, а другую - на режимах прямого хода с увеличением дебита до предельно допустимой величины, а затем направление изменения дебита в обоих группах меняют на противоположное, при этом контролируют суммарный дебит каждой пары скважин и общий дебит куста, удерживая их близкими к постоянным значениям для каждой пары скважин с точностью до 30%, а для шлейфа с точностью до 10%.

В ходе проведенного исследования была достигнута возможность за счет группового попарного разделения скважин куста проводить газодинамические исследования кустовых газовых и газоконденсатных скважин при их совместной работе в газосборном коллекторе на всех возможных режимах, включая предельно допустимый, без снижения общего расхода газа по кусту, и без выпусков газа в атмосферу. Обеспечение постоянства суммарного дебита скважин, имеющих наибольшую степень взаимовлияния при совместной работе, способствует стабилизации уровня динамического пластового давления в зоне дренирования скважины. Для этого каждому режиму прямого хода соответствует режим обратного хода, что существенно повышает достоверность результата. При этом удалось добиться исключения выпуска газа в атмосферу с бесполезным сжиганием газа в факельных установках в ходе проведения газодинамических, геофизических и специальных исследований, выполняемых в рамках контроля за разработкой месторождения. Годовая экономия от исключения бесполезного сброса газа из скважин достигает величины суточной добычи всего предприятия. Кроме того, исключается вредное воздействие на окружающую среду и персонал, выполняющий исследовательские работы на скважинах. Среди вредных факторов исключается токсикологическое воздействие на сотрудников и окружающую среду метанола, СО, CO2, частично несгоревшего природного газа и других продуктов горения, а также исключается шум, возникающий при сбросе газа, достигающий 120 дБ.

Описываемый способ осуществляют следующим образом.

Исследуемые скважины разделяют на пары, имеющие максимальную степень наложения контуров питания, и относят каждую из скважин пары к разным группам. Далее одновременно исследуют две группы скважин, состоящих из одноименных пар. На одной группе скважин проводят исследование на режимах обратного хода с уменьшением дебита до полной остановки, при этом проводят замер статического давления на устье и пластового давления. Далее на данной группе скважин проводят исследование на режимах прямого хода с увеличением дебита до предельно допустимой величины, причем проводят пуск скважин в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, а на другой группе скважин одновременно проводят исследование на режимах обратного хода с уменьшением дебита до полной остановки, при этом проводят замер статического давления на устье и пластового давления, а затем направление изменение дебита в обоих группах меняют на противоположное. В ходе проведения исследования проводят снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В. В процессе проведения испытаний контролируют суммарный дебит каждой пары скважин и общий дебит куста, удерживая их значения близкими к постоянным для каждой пары скважин с точностью до 30%, а для шлейфа с точностью 10%. Поддержание дебитов постоянными с заданной точностью обеспечивает выполнение условий, при которых газ с испытываемых скважин может подаваться в шлейф и использоваться для поставок потребителям, а также сохранять постоянную нагрузку на пласт.

Настоящее изобретение может быть использовано в газовой промышленности при проведении газодинамических, геофизических и специальных исследований газовых и газоконденсатных скважин, в частности для исследования скважин, сгруппированных в эксплуатационные кусты.

Похожие патенты RU2338877C1

название год авторы номер документа
СПОСОБ ОПТИМИЗАЦИИ ПЕРИОДИЧНОСТИ ГАЗОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН НА НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА 2017
  • Арно Олег Борисович
  • Ахметшин Баязетдин Саяхетдинович
  • Меркулов Анатолий Васильевич
  • Арабский Анатолий Кузьмич
  • Кирсанов Сергей Александрович
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
  • Кожухарь Руслан Леонидович
RU2661502C1
Способ исследования скважин при кустовом размещении 2016
  • Шулятиков Владимир Игоревич
  • Плосков Александр Александрович
  • Перемышцев Юрий Алексеевич
  • Изюмченко Дмитрий Викторович
  • Непомнящий Леонид Яковлевич
  • Медко Владимир Васильевич
RU2644997C2
СПОСОБ ГАЗОКОНДЕНСАТНЫХ ИССЛЕДОВАНИЙ СКВАЖИН 2022
  • Нерсесов Сергей Владимирович
  • Киселёв Михаил Николаевич
  • Михалёв Александр Анатольевич
  • Ильин Алексей Владимирович
  • Пермяков Виктор Сергеевич
  • Коц Евгений Валерьевич
  • Марухин Максим Александрович
  • Хасбутдинов Руслан Масхутович
  • Мелешко Николай Васильевич
  • Гаврилов Денис Николаевич
RU2784672C1
СПОСОБ АВТОМАТИЧЕСКОГО ПРОСЛУШИВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА 2016
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Меркулов Анатолий Васильевич
  • Кирсанов Сергей Александрович
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
  • Шарафутдинов Руслан Фархатович
  • Левинский Иван Юрьевич
RU2645055C1
Способ проведения газодинамических исследований газовых и газоконденсатных скважин 2023
  • Киселёв Михаил Николаевич
  • Михалёв Александр Анатольевич
  • Половинкин Дмитрий Викторович
  • Коваленко Александр Викторович
  • Коц Евгений Валерьевич
RU2826995C1
СПОСОБ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН С СУБГОРИЗОНТАЛЬНЫМ И ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ СТВОЛА 2009
  • Андреев Олег Петрович
  • Зинченко Игорь Александрович
  • Кирсанов Сергей Александрович
RU2386808C1
СПОСОБ УТОЧНЕНИЯ ГЕОЛОГО-ГАЗОДИНАМИЧЕСКОЙ МОДЕЛИ ГАЗОВОЙ ЗАЛЕЖИ ПО ДАННЫМ ЭКСПЛУАТАЦИИ 2017
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Меркулов Анатолий Васильевич
  • Кирсанов Сергей Александрович
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
  • Шарафутдинов Руслан Фархатович
  • Левинский Иван Юрьевич
  • Григорьев Борис Афанасьевич
RU2657917C1
СПОСОБ ПОВЫШЕНИЯ ОТДАЧИ КОНДЕНСАТА ЭКСПЛУАТИРУЕМЫМ ОБЪЕКТОМ НЕФТЕГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 2019
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Меркулов Анатолий Васильевич
  • Миронов Владимир Валерьевич
  • Сопнев Тимур Владимирович
  • Мурзалимов Заур Уразалиевич
  • Худяков Валерий Николаевич
  • Кущ Иван Иванович
  • Гункин Сергей Иванович
  • Кожухарь Руслан Леонидович
  • Талыбов Этибар Гурбанали Оглы
  • Кирсанов Сергей Александрович
  • Богоявленский Василий Игоревич
  • Богоявленский Игорь Васильевич
RU2713553C1
СПОСОБ ОПТИМИЗАЦИИ ТЕХНОЛОГИЧЕСКОГО РЕЖИМА РАБОТЫ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН 2015
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Кирсанов Сергей Александрович
  • Меркулов Анатолий Васильевич
  • Худяков Валерий Николаевич
  • Новиков Вадим Игоревич
  • Гункин Сергей Иванович
RU2607326C1
СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОГО И ОБЩЕГО КОЛИЧЕСТВА ЖИДКОЙ ВОДНОЙ ФАЗЫ, ПОСТУПАЮЩЕЙ ИЗ СКВАЖИНЫ В ПРОМЫСЛОВЫЙ ГАЗОСБОРНЫЙ КОЛЛЕКТОР 2010
  • Дудов Александр Николаевич
  • Ставицкий Вячеслав Алексеевич
  • Абдуллаев Ровшан Вазир Оглы
  • Митницкий Роман Александрович
  • Истомин Владимир Александрович
RU2460879C2

Реферат патента 2008 года СПОСОБ ГРУППОВОГО ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ КУСТОВЫХ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА СТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ

Изобретение относится к газовой промышленности и может быть использовано при проведении газодинамических, геофизических и специальных исследований газовых и газоконденсатных скважин, преимущественно для исследования скважин, сгруппированных в эксплуатационные кусты. Техническим результатом изобретения является повышение точности получаемых данных и сокращение сроков проведения исследования всех скважин куста. Способ включает остановку скважины, замер статического давления на устье и пластового давления, пуск скважины в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В. При этом исследуемые скважины разделяют на пары, имеющие максимальную степень наложения контуров питания, и относят каждую из скважин пары к разным группам. Одновременно исследуют две группы скважин, состоящих из одноименных пар. Одну группу исследуют на режимах обратного хода с уменьшением дебита до полной остановки, а другую - на режимах прямого хода с увеличением дебита до предельно допустимой величины. Затем направление изменения дебита в обоих группах меняют на противоположное. При этом контролируют суммарный дебит каждой пары скважин и общий дебит куста, удерживая их близкими к постоянным значениям для каждой пары скважин с точностью до 30%, а для шлейфа с точностью до 10%.

Формула изобретения RU 2 338 877 C1

Способ группового проведения исследований газовых и газоконденсатных скважин на стационарных режимах фильтрации, включающий остановку скважины, замер статического давления на устье и пластового давления, пуск скважины в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В, отличающийся тем, что исследуемые скважины разделяют на пары, имеющие максимальную степень наложения контуров питания, и относят каждую из скважин пары к разным группам, одновременно исследуют две группы скважин, состоящих из одноименных пар, причем одну группу на режимах обратного хода с уменьшением дебита до полной остановки, а другую - на режимах прямого хода с увеличением дебита до предельно допустимой величины, а затем направление изменения дебита в обоих группах меняют на противоположное, при этом контролируют суммарный дебит каждой пары скважин и общий дебит куста, удерживая их близкими к постоянным значениям для каждой пары скважин с точностью до 30%, а для шлейфа с точностью до 10%.

Документы, цитированные в отчете о поиске Патент 2008 года RU2338877C1

Способ определения коэффициентов фильтрационных сопротивлений газовых и газоконденсатных скважин 1989
  • Гильфанов Марат Ахматфаязович
  • Гурленов Евгений Михайлович
SU1710718A1
Способ контроля процесса разработки газовой залежи 1981
  • Закиров Сумбат Набиевич
  • Тимашев Альберт Насибович
  • Севастьянов Олег Максимович
  • Ахапкин Виктор Иванович
  • Кобзев Юрий Владимирович
  • Колбиков Сергей Валентинович
SU1105618A1
Способ контроля разработки полнопластовой газовой залежи 1987
  • Алехин Станислав Николаевич
SU1465546A1
Способ определения продуктивной характеристики газовых и газоконденсатных скважин 1988
  • Гурленов Евгений Михайлович
  • Гильфанов Марат Ахматфаязович
SU1643709A1
СПОСОБ КОНТРОЛЯ РЕЖИМА РАЗРАБОТКИ УГЛЕВОДОРОДНОЙ ЗАЛЕЖИ В ОДНОРОДНОМ ПЛАСТЕ 1991
  • Алехин Станислав Николаевич[Tm]
  • Аннамухамедов Дурды[Tm]
RU2053350C1
СПОСОБ ИССЛЕДОВАНИЯ ГАЗОВЫХ СКВАЖИН ПРИ СТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ 1992
  • Тищенко Василий Иванович[Ua]
RU2067663C1
СПОСОБ ЭКСПЛУАТАЦИИ КУСТОВЫХ ГАЗОВЫХ СКВАЖИН И ЭЖЕКТИРУЮЩЕЕ УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1994
  • Чугунов Л.С.
  • Березняков А.И.
  • Шадрин В.И.
RU2110673C1
US 5337821 A, 16.08.1994
Устройство для подналадки с механизмом автоматической подачи командного импульса на рабочий орган станка 1953
  • Цепляев М.В.
SU113285A1
БУЗИНОВ С.Н
и др
Исследование нефтяных и газовых скважин и пластов
- М.: Недра, 1984, с.48.

RU 2 338 877 C1

Авторы

Андреев Олег Петрович

Зинченко Игорь Александрович

Кирсанов Сергей Александрович

Ахмедсафин Сергей Каснулович

Даты

2008-11-20Публикация

2007-04-12Подача