Изобретение относится к газовой промышленности и может быть использовано при проведении газодинамических, геофизических и специальных исследований газовых и газоконденсатных скважин, преимущественно для исследования скважин, сгруппированных в эксплуатационные кусты.
Известен способ проведения исследований газовых и газоконденсатных скважин с организацией контроля разработки залежи при различных условиях питания, включающий контроль депрессии за контуром залежи по пьезометрическим скважинам, размещенным в зонах с различными условиями питания и в контуре залежи по наблюдательным скважинам, при этом наблюдательные скважины размещают попарно с пьезометрическими скважинами на участках с различными граничными условиями питания, причем в скважинах замеряют давление и контролируют режим разработки залежи в каждой зоне (см. патент RU №2053350, кл. Е21В 43/00, 27.01.1996).
Данный способ позволяет контролировать темп снижения давления залежи. Однако для реализации данного способа необходимо бурение специальных скважин, а именно пьезометрических и наблюдательных, и размещение их в строго определенных местах, что приводит к значительным затратам и не дает четкого представления о состоянии конкретных скважин куста, что сужает эффективность данного способа исследования.
Наиболее близким по технической сущности к заявляемому изобретению является способ проведения исследований газовых и газоконденсатных скважин на стационарных режимах фильтрации, включающий остановку скважины, замер статического давления на устье и пластового давления, пуск скважины в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В (см. авторское свидетельство SU №1710718, кл. Е21В 47/10, 07.02.1992).
Существенным недостатком данного способа является невозможность проведения исследований на режимах с дебитами, существенно превышающими рабочий, т.е. дебит, с которым скважина работает в газосборном коллекторе совместно с остальными скважинами куста. Это обусловлено относительно постоянной величиной давления в газосборном коллекторе, зависящей от уровня отборов газа и режимов работы всех скважин куста. Другим недостатком способа является неточность определения величины пластового давления, связанная с взаимовлиянием работающих скважин при их кустовом размещении. Так, при пуске каждой скважины вокруг нее образуется непрерывно растущая область распределения давления, имеющая форму логарифмических кривых, начало которых расположено у стенки возмущающей скважины, а конец с течением времени удаляется от нее. Внешняя граница возмущенной области служит контуром питания скважины на данный момент времени с начальным пластовым давлением и называется приведенным радиусом влияния. В однородном пласте область влияния одиночной скважины имеет форму круга. При одновременной работе с одинаковым постоянным дебитом равномерно расположенных в однородном пласте скважин образуется установившаяся область влияния, которую можно заменить эквивалентным кругом (см., например, Гриценко А.И. и др. «Руководство по исследованию скважин», Москва, Наука, 1995, с.180-181). Таким образом, при остановке одной из скважин куста замеренное давление является не текущим пластовым, а динамическим, величина которого определяется конкретным расположением и дебитами скважин куста.
Задачей, на решение которой направлено настоящее изобретение, является возможность проведения исследования нескольких скважин одновременно с исключением влияния расположения скважин на получаемый результат.
Техническим результатом, достигаемым от реализации изобретения, является повышение точности получаемых данных и сокращение сроков проведения исследования всех скважин куста.
Указанная задача решается, а технический результат достигается тем, что способ группового проведения исследований газовых и газоконденсатных скважин на стационарных режимах фильтрации включает остановку скважины, замер статического давления на устье и пластового давления, пуск скважины в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В, при этом исследуемые скважины разделяют на пары, имеющие максимальную степень наложения контуров питания, и относят каждую из скважин пары к разным группам, одновременно исследуют две группы скважин, состоящих из одноименных пар, причем одну группу на режимах обратного хода с уменьшением дебита до полной остановки, а другую - на режимах прямого хода с увеличением дебита до предельно допустимой величины, а затем направление изменения дебита в обоих группах меняют на противоположное, при этом контролируют суммарный дебит каждой пары скважин и общий дебит куста, удерживая их близкими к постоянным значениям для каждой пары скважин с точностью до 30%, а для шлейфа с точностью до 10%.
В ходе проведенного исследования была достигнута возможность за счет группового попарного разделения скважин куста проводить газодинамические исследования кустовых газовых и газоконденсатных скважин при их совместной работе в газосборном коллекторе на всех возможных режимах, включая предельно допустимый, без снижения общего расхода газа по кусту, и без выпусков газа в атмосферу. Обеспечение постоянства суммарного дебита скважин, имеющих наибольшую степень взаимовлияния при совместной работе, способствует стабилизации уровня динамического пластового давления в зоне дренирования скважины. Для этого каждому режиму прямого хода соответствует режим обратного хода, что существенно повышает достоверность результата. При этом удалось добиться исключения выпуска газа в атмосферу с бесполезным сжиганием газа в факельных установках в ходе проведения газодинамических, геофизических и специальных исследований, выполняемых в рамках контроля за разработкой месторождения. Годовая экономия от исключения бесполезного сброса газа из скважин достигает величины суточной добычи всего предприятия. Кроме того, исключается вредное воздействие на окружающую среду и персонал, выполняющий исследовательские работы на скважинах. Среди вредных факторов исключается токсикологическое воздействие на сотрудников и окружающую среду метанола, СО, CO2, частично несгоревшего природного газа и других продуктов горения, а также исключается шум, возникающий при сбросе газа, достигающий 120 дБ.
Описываемый способ осуществляют следующим образом.
Исследуемые скважины разделяют на пары, имеющие максимальную степень наложения контуров питания, и относят каждую из скважин пары к разным группам. Далее одновременно исследуют две группы скважин, состоящих из одноименных пар. На одной группе скважин проводят исследование на режимах обратного хода с уменьшением дебита до полной остановки, при этом проводят замер статического давления на устье и пластового давления. Далее на данной группе скважин проводят исследование на режимах прямого хода с увеличением дебита до предельно допустимой величины, причем проводят пуск скважин в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, а на другой группе скважин одновременно проводят исследование на режимах обратного хода с уменьшением дебита до полной остановки, при этом проводят замер статического давления на устье и пластового давления, а затем направление изменение дебита в обоих группах меняют на противоположное. В ходе проведения исследования проводят снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В. В процессе проведения испытаний контролируют суммарный дебит каждой пары скважин и общий дебит куста, удерживая их значения близкими к постоянным для каждой пары скважин с точностью до 30%, а для шлейфа с точностью 10%. Поддержание дебитов постоянными с заданной точностью обеспечивает выполнение условий, при которых газ с испытываемых скважин может подаваться в шлейф и использоваться для поставок потребителям, а также сохранять постоянную нагрузку на пласт.
Настоящее изобретение может быть использовано в газовой промышленности при проведении газодинамических, геофизических и специальных исследований газовых и газоконденсатных скважин, в частности для исследования скважин, сгруппированных в эксплуатационные кусты.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПТИМИЗАЦИИ ПЕРИОДИЧНОСТИ ГАЗОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН НА НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА | 2017 |
|
RU2661502C1 |
Способ исследования скважин при кустовом размещении | 2016 |
|
RU2644997C2 |
СПОСОБ ГАЗОКОНДЕНСАТНЫХ ИССЛЕДОВАНИЙ СКВАЖИН | 2022 |
|
RU2784672C1 |
СПОСОБ АВТОМАТИЧЕСКОГО ПРОСЛУШИВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА | 2016 |
|
RU2645055C1 |
Способ проведения газодинамических исследований газовых и газоконденсатных скважин | 2023 |
|
RU2826995C1 |
СПОСОБ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН С СУБГОРИЗОНТАЛЬНЫМ И ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ СТВОЛА | 2009 |
|
RU2386808C1 |
СПОСОБ УТОЧНЕНИЯ ГЕОЛОГО-ГАЗОДИНАМИЧЕСКОЙ МОДЕЛИ ГАЗОВОЙ ЗАЛЕЖИ ПО ДАННЫМ ЭКСПЛУАТАЦИИ | 2017 |
|
RU2657917C1 |
СПОСОБ ПОВЫШЕНИЯ ОТДАЧИ КОНДЕНСАТА ЭКСПЛУАТИРУЕМЫМ ОБЪЕКТОМ НЕФТЕГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ | 2019 |
|
RU2713553C1 |
СПОСОБ ОПТИМИЗАЦИИ ТЕХНОЛОГИЧЕСКОГО РЕЖИМА РАБОТЫ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН | 2015 |
|
RU2607326C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОГО И ОБЩЕГО КОЛИЧЕСТВА ЖИДКОЙ ВОДНОЙ ФАЗЫ, ПОСТУПАЮЩЕЙ ИЗ СКВАЖИНЫ В ПРОМЫСЛОВЫЙ ГАЗОСБОРНЫЙ КОЛЛЕКТОР | 2010 |
|
RU2460879C2 |
Изобретение относится к газовой промышленности и может быть использовано при проведении газодинамических, геофизических и специальных исследований газовых и газоконденсатных скважин, преимущественно для исследования скважин, сгруппированных в эксплуатационные кусты. Техническим результатом изобретения является повышение точности получаемых данных и сокращение сроков проведения исследования всех скважин куста. Способ включает остановку скважины, замер статического давления на устье и пластового давления, пуск скважины в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В. При этом исследуемые скважины разделяют на пары, имеющие максимальную степень наложения контуров питания, и относят каждую из скважин пары к разным группам. Одновременно исследуют две группы скважин, состоящих из одноименных пар. Одну группу исследуют на режимах обратного хода с уменьшением дебита до полной остановки, а другую - на режимах прямого хода с увеличением дебита до предельно допустимой величины. Затем направление изменения дебита в обоих группах меняют на противоположное. При этом контролируют суммарный дебит каждой пары скважин и общий дебит куста, удерживая их близкими к постоянным значениям для каждой пары скважин с точностью до 30%, а для шлейфа с точностью до 10%.
Способ группового проведения исследований газовых и газоконденсатных скважин на стационарных режимах фильтрации, включающий остановку скважины, замер статического давления на устье и пластового давления, пуск скважины в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления А и В, отличающийся тем, что исследуемые скважины разделяют на пары, имеющие максимальную степень наложения контуров питания, и относят каждую из скважин пары к разным группам, одновременно исследуют две группы скважин, состоящих из одноименных пар, причем одну группу на режимах обратного хода с уменьшением дебита до полной остановки, а другую - на режимах прямого хода с увеличением дебита до предельно допустимой величины, а затем направление изменения дебита в обоих группах меняют на противоположное, при этом контролируют суммарный дебит каждой пары скважин и общий дебит куста, удерживая их близкими к постоянным значениям для каждой пары скважин с точностью до 30%, а для шлейфа с точностью до 10%.
Способ определения коэффициентов фильтрационных сопротивлений газовых и газоконденсатных скважин | 1989 |
|
SU1710718A1 |
Способ контроля процесса разработки газовой залежи | 1981 |
|
SU1105618A1 |
Способ контроля разработки полнопластовой газовой залежи | 1987 |
|
SU1465546A1 |
Способ определения продуктивной характеристики газовых и газоконденсатных скважин | 1988 |
|
SU1643709A1 |
СПОСОБ КОНТРОЛЯ РЕЖИМА РАЗРАБОТКИ УГЛЕВОДОРОДНОЙ ЗАЛЕЖИ В ОДНОРОДНОМ ПЛАСТЕ | 1991 |
|
RU2053350C1 |
СПОСОБ ИССЛЕДОВАНИЯ ГАЗОВЫХ СКВАЖИН ПРИ СТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ | 1992 |
|
RU2067663C1 |
СПОСОБ ЭКСПЛУАТАЦИИ КУСТОВЫХ ГАЗОВЫХ СКВАЖИН И ЭЖЕКТИРУЮЩЕЕ УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2110673C1 |
US 5337821 A, 16.08.1994 | |||
Устройство для подналадки с механизмом автоматической подачи командного импульса на рабочий орган станка | 1953 |
|
SU113285A1 |
БУЗИНОВ С.Н | |||
и др | |||
Исследование нефтяных и газовых скважин и пластов | |||
- М.: Недра, 1984, с.48. |
Авторы
Даты
2008-11-20—Публикация
2007-04-12—Подача