СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДЫ И СУММАРНОГО СОДЕРЖАНИЯ МЕТАЛЛОСОДЕРЖАЩИХ МИКРОЭЛЕМЕНТОВ В НЕФТИ ИЛИ НЕФТЕПРОДУКТАХ Российский патент 2010 года по МПК G01N27/06 

Описание патента на изобретение RU2386959C1

Предлагаемое изобретение относится к исследованию физико-химических свойств нефти и нефтепродуктов и может быть использовано для идентификации типа нефтей по месторождению или смесевых, а также определения содержания воды и суммарного содержания металлосодержащих микроэлементов в нефти и нефтепродуктах непосредственно в потоке трубопровода.

Известен способ для определения процентного содержания воды в нефтепродуктах с использованием диэлектрического метода [Тареев Б.М. Физика диэлектриков. М.: Энергоатомиздат], в принципе которого лежит измерение диэлектрической проницаемости обезвоженной и сырой нефти. Согласно формуле Лихтенеккера-Ротера диэлектрическая проницаемость смеси, состоящей из двух компонентов - воды и нефти, зависит от их объемного соотношения

где y1 и y2 - объемные доли воды и нефти;

ξ1 - диэлектрическая проницаемость воды;

ξ2 - диэлектрическая проницаемость обезвоженной нефти;

ξ3 - диэлектрическая проницаемость(смеси) сырой нефти.

С учетом известного значения диэлектрической проницаемости воды ξ1 - выражение (1) преобразуется к виду

Таким образом, для определения процентного содержания воды достаточно измерить диэлектрическую проницаемость смеси ξ3 и обезвоженного продукта ξ2.

Недостатком этого способа является отсутствие возможности определения воды в нефти и нефтепродукте в потоке трубопровода, способ требует пробоотборки исследуемого продукта, а главное отсутствует идентификация типа нефти, по месторождению или смесевой нефти, что дает большую погрешность измерения при исследовании неизвестной нефти и отсутствует измерение суммарного содержания металлосодержащих микроэлементов. Кроме того, соотношение (1) справедливо для малого содержания воды в нефти.

В основу изобретения положена задача создать способ определения содержания воды в нефти и нефтепродуктах, осуществления идентификации нефти и нефтепродукта и определения суммарного содержания металлосодержащих микроэлементов, который позволил бы повысить точность определения воды в нефти и нефтепродуктах и позволил бы иметь стационарную калибровочную модель по типам нефти по месторождению или смесевых нефтей.

Поставленная задача достигается тем, что в способе определения содержания воды в нефти и нефтепродуктах, заключающемся в определении диэлектрической проницаемости ξf1 сырой и обезвоженной нефти на первой частоте генератора синусоидального напряжения f1, дополнительно производится измерение диэлектрической проницаемости ξf2 на второй частоте f2, фактически проводим измерение комплексной проводимости исследуемого продукта Gf1 и Gf2, которая пропорциональна диэлектрической проницаемости продукта, определяется соотношение

при калибровке данные соотношения являются классификатором нефтей, т.е. по ним идентифицируется тип нефти или нефтепродукта, так как содержание воды зависит от диэлектрической проницаемости нефти, то необходимо дополнительно учитывать существенный вклад возмущающих воздействий на диэлектрическую проницаемость, таких как газовые включения и наличие металлосодержащих микроэлементов, для этого дополнительно определяется суммарное содержание металлосодержащих микроэлементов δ, таким образом, исключают погрешность измерения от газовых включений при идентификации нефти по месторождению и соответственно расчете содержания воды в нефти или нефтепродукте, далее при частоте f1 определяем общее приращение диэлектрической проницаемости относительно известной диэлектрической проницаемости для обезвоженной нефти, рассчитываем приращение диэлектрической проницаемости, приходящееся на единицу концентрации воды, и далее по отношению этих приращений при частоте f1 определяем общее приращение диэлектрической проницаемости относительно известной диэлектрической проницаемости для обезвоженной нефти, рассчитываем приращение диэлектрической проницаемости, приходящееся на единицу концентрации воды, и далее по отношению этих приращений при частоте f1 определяют массовую долю воды в нефти по формуле

где Uξ0 - пропорциональная величина в [В] относительной

диэлектрической проницаемости обезвоженной нефти при t=20°C;

Uξ20 - пропорциональная величина в [В] относительной

диэлектрической проницаемости сырой нефти, приведенной к 20°C;

Δ - приращение относительной величины диэлектрической проницаемости нефти на единицу концентрации воды.

На фиг.1 изображена функциональная схема устройства для осуществления предлагаемого способа.

На фиг.2 представлена зависимость комплексной электропроводимости нефти различного типа от частоты.

Устройство содержит отрезок полимерной трубы 1, первичный преобразователь 2, выполненный в виде медных пластин 3, закрепленных на поверхности трубы, датчик-магнитометр 3, закрепленный по окружности трубы 1 в виде браслета, датчик температуры 4, двухканальный коммутатор 5, генератор 6, генератор рабочей частоты 7, первый измерительный усилитель 8, второй измерительный усилитель 9, счетно-решающее устройство 10, выходы генераторов 6 и 7 соединены с входами коммутатора 5, выход которого соединен с первой обкладкой преобразователя (конденсатора) 2, вторая обкладка соединена с входом первого измерительного усилителя 8, выход которого соединен с первым информационным входом счетно-решающего устройства 10, выход датчика-магнитометра 3 соединен с входом второго измерительного усилителя 9, выход которого соединен со вторым информационным входом счетно-решающего устройства 10, выход датчика температуры 4 соединен с третьим информационным входом счетно-решающего устройства 10, управляющие выходы счетно-решающего устройства 10 соединены с соответствующими управляющими входами коммутатора 5.

Способ осуществляется следующим образом.

Через отрезок полимерной трубы 1, которая врезана в нефтепровод, протекает нефть, которая является диэлектриком и воздействует на емкость конденсатора (обкладки 2) первичного преобразователя, который выполнен в виде конденсатора, через который и проходит синусоидальное напряжение, попеременно включают частоты f1 и f2, f1<f2. Зависимость комплексной электропроводности от частоты сигналов и температуры для различных нефтей и смесевых продуктов различная (фиг.2).

Для каждого продукта уровень величин электропроводностей и их приращений Δ1, Δ2, …, Δi на единицу частоты существенно отличается, наблюдается также различие величин приращений диэлектрической проницаемости, приходящееся на единицу частоты.

Определяется соотношение

которое является идентификацией нефти по месторождению или смеси различных нефтей.

Для этого через коммутатор 5 поочередно подключают генераторы синусоидальных сигналов 6 и 7 с частотой f1 и f2, f1<f2, на вход датчика 2, сигнал с датчика 2 через измерительный усилитель 8 поступает в счетно-решающее устройство 10, где и рассчитывается соотношение

По результату вычисления выбирается конкретная калибровочная модель для данной нефти и по результатам измерения диэлектрической проницаемости нефти на рабочей частоте f1 вычисляют массовую долю воды в нефти по формуле (2).

Так как в принципе работы лежит зависимость диэлектрической проницаемости нефти от содержания воды, то необходимо учитывать существенный вклад возмущающих воздействий на диэлектрическую проницаемость, таких как газовые включения и наличие металлосодержащих микроэлементов в нефти, для повышения точности определения содержания воды. Для этого служит сверхчувствительный датчик-магнитометр 3, который улавливает магнитные возмущения, создаваемые металлосодержащими микрочастицами, сигнал датчика усиливается усилителем 9 и считывается счетно-решающим устройством 10. Таким образом, получаем величину, характеризующую массовую долю металлосодержащих частиц δ, влияющих на диэлектрическую проницаемость нефти и нефтепродуктов.

Таким образом, окончательный результат η' идентификации получим нормированием величины η - делением на величину δ,

.

Данная величина η' будет постоянной для данного типа нефти или нефтепродукта и может служить показателем наличия газовых включений в нефти. В случае если η увеличится и η' соответственно увеличится, то это говорит о наличии газовых включений. В этом случае данное измерение является ошибочным и для нефтей с газовыми включениями нужно проводить отдельную калибровку. Таким образом, измеряя дополнительно влияние металлосодержащих частиц, мы уточняем идентификацию типа нефти.

Перед работой, предварительно определяем диэлектрическую проницаемость обезвоженной нефти данного типа, величина которой хранится в памяти счетно-решающего устройства.

Похожие патенты RU2386959C1

название год авторы номер документа
Устройство для определения содержания воды в потоке нефтепродукта 2019
  • Ахобадзе Гурами Николаевич
RU2706451C1
Способ непрерывного контроля содержания воды в кипящих водонефтяных и водо-углеводородных эмульсиях природного и техногенного происхождения 2021
  • Хуснутдинов Исмагил Шакирович
  • Сафиулина Алия Габделфаязовна
  • Хуснутдинов Сулейман Исмагилович
  • Шангараева Альфия Зуфаровна
  • Заббаров Руслан Раисович
  • Гаффаров Азат Ильдарович
RU2790202C1
СПОСОБ ОПРЕДЕЛЕНИЯ КАЧЕСТВА НЕФТИ ИЛИ ИХ СМЕСЕЙ 1994
  • Усиков С.В.
  • Иванова З.Д.
  • Зонов В.А.
  • Усиков А.С.
  • Баннов П.Г.
  • Варшавский О.М.
RU2065157C1
БОРТОВОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ОКТАНОВОГО ЧИСЛА БЕНЗИНОВ 2008
  • Астапов Владислав Николаевич
RU2380695C1
СПОСОБ ИЗМЕРЕНИЯ ОБЪЕМНОГО СОДЕРЖАНИЯ КОМПОНЕНТА МНОГОКОМПОНЕНТНОЙ ОДНОРОДНОЙ СМЕСИ 1997
  • Лункин Б.В.
RU2119658C1
Способ определения влажности диэлектрического вещества 1987
  • Совлуков Александр Сергеевич
SU1497531A1
СПОСОБ ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА БЕНЗИНОВ 2005
  • Астапов Владислав Николаевич
RU2305283C2
СПОСОБ ЭКСПРЕСС-АНАЛИЗА ЖИДКИХ ФАСОВАННЫХ ПРОДУКТОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2018
  • Белозеров Валерий Владимирович
  • Лукьянов Александр Дмитриевич
  • Обухов Павел Серафимович
  • Абросимов Дмитрий Владимирович
  • Любавский Алексей Юрьевич
  • Белозеров Владимир Валерьевич
RU2696810C1
Устройство для определения содержания воды в продукции нефтяных скважин 1988
  • Демьянов Анатолий Алексеевич
SU1682898A1
РАДИОФИЗИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ФИЗИЧЕСКОЙ ГЛИНЫ В ПОЧВАХ 2011
  • Миронов Валерий Леонидович
  • Бобров Павел Петрович
  • Фомин Сергей Викторович
RU2467314C1

Иллюстрации к изобретению RU 2 386 959 C1

Реферат патента 2010 года СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДЫ И СУММАРНОГО СОДЕРЖАНИЯ МЕТАЛЛОСОДЕРЖАЩИХ МИКРОЭЛЕМЕНТОВ В НЕФТИ ИЛИ НЕФТЕПРОДУКТАХ

Способ определения содержания воды в нефти и нефтепродуктах в потоке трубопровода включает измерение комплексной электропроводности нефти и нефтепродукта на двух частотах: на частоте f1 и на рабочей частоте f2 (f1<f2), затем проводят температурную коррекцию измеренных параметров, определяют соотношение η комплексных величин электропроводностей при двух разных частотах, определяют массовую долю металлосодержащих микрочастиц δ и по величине соотношения η осуществляют процесс идентификации, а по величине соотношения

производят уточнение типа нефти или нефтепродукта, а суммарное содержание воды в нефти или нефтепродукте рассчитывают по калибровочной модели, относящейся к данному типу нефти или нефтепродукта. Изобретение обеспечивает повышение точности определения воды в нефти и нефтепродуктах и возможность получения стационарной калибровочной модели по типам нефти по месторождению или смесевых нефтей. 2 ил.

Формула изобретения RU 2 386 959 C1

Способ определения содержания воды в нефти или нефтепродуктах в потоке трубопровода, отличающийся тем, что измеряют комплексную электропроводность нефти или нефтепродукта на определенной частоте f1 и дополнительно измеряют комплексную электропроводность на рабочей частоте f2 (f1<f2), проводят температурную коррекцию измеренных параметров, определяют соотношение η комплексных величин электропроводностей при двух разных частотах, определяют массовую долю металлосодержащих микрочастиц δ и по величине соотношения η осуществляют процесс идентификации, а по величине соотношения производят уточнение типа нефти или нефтепродукта, а суммарное содержание воды в нефти или нефтепродукте рассчитывают по калибровочной модели, относящейся к данному типу нефти или нефтепродукта.

Документы, цитированные в отчете о поиске Патент 2010 года RU2386959C1

УСТРОЙСТВО ДИАГНОСТИКИ СОСТОЯНИЯ НЕФТЕЙ ПО ИХ АКТИВНОЙ ЭЛЕКТРОПРОВОДНОСТИ 1996
  • Сомов В.Е.
  • Баннов П.Г.
  • Лаптев Н.В.
  • Варшавский О.М.
  • Воронина Н.А.
  • Борисова Л.А.
  • Усиков С.В.
  • Васильева Л.К.
  • Зонов В.А.
  • Иванова З.Д.
  • Иголкин Б.И.
  • Петров Ю.П.
RU2119156C1
УСТРОЙСТВО ДИАГНОСТИКИ СОСТОЯНИЯ НЕФТЕЙ И ПРОДУКТОВ НЕФТЕПЕРЕРАБОТКИ ПО ИХ АКТИВНОЙ ЭЛЕКТРОПРОВОДНОСТИ И ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ 2002
  • Богачев И.М.
  • Богачева Н.А.
  • Вылегжанин В.В.
  • Иголкин Б.И.
  • Карташов Ю.И.
  • Петкау О.Г.
  • Усиков С.В.
  • Чернова Л.И.
RU2209422C1
RU 2055354 C1, 27.02.1996.

RU 2 386 959 C1

Авторы

Астапов Владислав Николаевич

Даты

2010-04-20Публикация

2008-11-12Подача