СПОСОБ АНАЛИЗА ФЕРРОМАГНИТНЫХ ЧАСТИЦ В МАСЛЕ Российский патент 2010 года по МПК G01N27/72 

Описание патента на изобретение RU2390012C1

Изобретение предназначено для измерения концентрации микрочастиц железа и его сплавов в смазочных материалах с целью определения степени износа пар трения и может применяться как для периодического анализа состояния узлов машин и механизмов, так и для непрерывного мониторинга в процессе их эксплуатации.

Анализ содержания ферромагнитных частиц в масле, как средство индикации технического состояния узлов трения, известен очень давно. Ферромагнитные свойства частиц в большинстве случаев используются для повышения их локальной концентрации за счет притягивания к источнику неоднородного постоянного магнитного поля. Дальнейший анализ обычно проводят оптическими методами или по изменению емкости конденсатора, охватывающего поток масла [1]. Здесь требуется длительная экспозиция, и трудно установить количество частиц, ответственных непосредственно за износ пар трения, поскольку изменение оптических свойств или емкости конденсатора обусловлено также и неметаллическими примесями в масле.

Имеются технические решения, напрямую использующие для анализа частиц их ферромагнитные свойства. Последние влияют на индуктивность охватывающей объем масла электрической катушки, являющейся составной частью колебательного контура. Однако прямая индикация его собственной частоты дает плохие результаты из-за сильного дрейфа, и приходится искать способы, использующие частотный сдвиг, спровоцированный управляемым внешним воздействием, например, циклическим включением постоянного магнитного поля [2]. Другим методом анализа, основанным на контроле усредненной магнитной проницаемости масла, является использование исследуемого объема в качестве сердечника трансформатора [3]. В данном случае вторичное переменное напряжение зависит от концентрации частиц. Хотя эти методы измеряют непосредственно содержание частица железа и его сплавов, они не различают их форму. Дело в том, что кроме процесса износа пар трения поставщиком металлических частиц является питинговая коррозия. Многочисленными исследования установлено, что в этом случае образуются сферические частицы, в то время как микрочастицы, полученные при трении, всегда имеют вытянутость. При этом отношение максимального и минимального размеров находится в интервале 3-10.

Наиболее близким к сущности предлагаемой заявки можно считать способ анализа, чувствительный к различиям в форме частиц [4]. Внешне схема измерения напоминает трансформаторный вариант. Имеются питаемая переменным напряжением первичная обмотка и используемая для измерения напряжения вторичная обмотка. С целью компенсации фонового сигнала последняя разделена на две секции, одна из которых окружает исследуемый объем, вторая расположена параллельно. Чувствительность метода к форме частиц вытекает из того, что измерения проводятся при варьировании частоты в диапазоне 1-100 Гц. При этом сигнал с низкочастотного края спектра оказывается выше. Очевидно, что данный эффект обусловлен крутильными колебаниями или даже полным вращением несферических частиц под действием переменного магнитного поля и несет, как правильно отмечено авторами, информацию о вязкости пробы. Во втором варианте измерения сравниваются результаты, получаемые при поочередном приложении магнитного поля во взаимно перпендикулярных направлениях.

Основным недостатком упомянутого способа является зависимость получаемой информации от слишком большого числа факторов, что делает ее интерпретацию очень сложной.

Предложенный в прототипе метод воздействия на пробу поочередным перекрестным магнитным полем можно трансформировать так, чтобы он реагировал только на присутствие вытянутых частиц. Именно это и было сделано в заявляемом способе. Суть анализа заключается в использовании для такого воздействия не переменного, а постоянного магнитного поля. Чтобы полностью исключить влияние вязкости, переключение направления осуществляют с периодом, достаточным для ориентации всех вытянутых частиц вдоль силовых линий. Исследования показали, что для подавляющего большинства образующихся при трении частиц это время составляет около секунды. Метод основан на том обстоятельстве, что эффективная магнитная проницаемость всякого несферического ферромагнитного тела зависит от его ориентации относительно направления измерения, принимая максимальное и минимальное значения в направлениях максимального и минимального размеров соответственно. Это справедливо и для микрочастиц. Контроль усредненной дифференциальной магнитной проницаемости проводят на основе измерения частоты собственных колебаний контура, содержащего катушку, охватывающую исследуемый объем пробы. Первое измерение делают при ориентации постоянного магнитного поля вдоль оси катушки, второе - в поперечном направлении. Разность показывает уровень наличия вытянутых ферромагнитных частиц. Конкретную концентрацию этих частиц в «ppm» находят по калибровочной функции, предварительно построенной по результатам измерения стандартных образцов.

Схема реализации описанного способа приведена на фиг.1. Пробирка с пробой масла 1 пропущена внутрь обмотки 2, входящей в колебательный контур, задающий частоту генератора 3. Возбуждаемое в контуре переменное напряжение поступает на блок управления и обработки 4, который также осуществляет поочередное включение обмоток, создающих в объеме пробы постоянное магнитное поле: по цепи А - в вертикальном направлении, по цепи В - в горизонтальном. Частота колебаний контура - около 80 кГц.

Алгоритм работы установки показан на фиг.2. В некоторый момент времени t0 по цепи А подается прямоугольный импульс длительностью 2 с. Через одну секунду, требуемую для успокоения переходных процессов и для полного поворота микрочастиц в направлении поля, в момент времени t1, начинается измерение частоты контура f1, которое длится также 1 секунду, и заканчивается в момент времени t2 одновременно с концом импульса цепи А. В этот же момент прямоугольный импульс длительностью 2 с подается по цепи В. Также с секундной задержкой в момент времени t3 включается секундная экспозиция измерения частоты f2, которая заканчивается в момент времени t4 одновременно с концом импульса цепи В. Далее все повторяется снова. Каждый раз в конце описанного цикла автоматически рассчитывается разность: f2-f1, на основании которой по калибровочной функции сразу вычисляется искомая концентрация частиц, выводимая с периодом 4 с на индикатор. Таким образом, процесс измерения можно наблюдать в динамике. Всеми процедурами управляет встроенный процессор.

Изложенный способ реализован в подготовленном к серийному выпуску портативном анализаторе. Чувствительность определения концентраций оказалась весьма высокой, сравнимой с рентгеноспектральным анализом: порог обнаружения составил несколько ppm.

Источники информации

1. Патент РФ №2150696 от 26.10.95.

2. Патент США №4841244 от 18.09.1989.

3. Патент США №5001424 от 19.03.1991.

4. Патент США №4651092 от 17.03.1987.

Похожие патенты RU2390012C1

название год авторы номер документа
АНАЛИЗАТОР ЭЛЕМЕНТОВ В ЖИДКОСТЯХ 2006
  • Сергеев Святослав Михайлович
  • Лозовой Леонид Николаевич
RU2334220C1
МНОГОКАНАЛЬНЫЙ РЕНТГЕНОВСКИЙ СПЕКТРОМЕТР 2006
  • Сергеев Святослав Михайлович
  • Лозовой Леонид Николаевич
RU2361194C2
ЗАТВОР МАГНИТОПРОВОДА 2005
  • Сергеев Святослав Михайлович
RU2278435C1
УДВОИТЕЛЬ ЧАСТОТЫ НА ТРАНСФОРМАТОРЕ 2009
  • Сергеев Святослав Михайлович
RU2382429C1
Способ определения концентрации металлических включений в жидкости и устройство для его осуществления 1977
  • Мозгалевский Андрей Васильевич
  • Костанди Георгий Георгиевич
  • Тарасенко Валентин Иннокентьевич
SU864088A1
СПОСОБ ВЫДЕЛЕНИЯ И ИДЕНТИФИКАЦИИ БАКТЕРИЙ 2009
  • Волошин Александр Григорьевич
  • Бунин Виктор Дмитриевич
  • Акимова Лариса Андреевна
  • Игнатов Сергей Георгиевич
RU2431843C2
ТРАНСФОРМАТОР 2008
  • Сергеев Святослав Михайлович
RU2366019C1
СПОСОБ ДИАГНОСТИКИ АГРЕГАТОВ МАШИН ПО ПАРАМЕТРАМ РАБОТАЮЩЕГО МАСЛА 2011
  • Власов Юрий Алексеевич
  • Тищенко Николай Терентьевич
  • Будько Юрий Александрович
  • Ляпина Ольга Викторовна
  • Гильц Владимир Оттович
  • Ляпин Алексей Николаевич
  • Исмаилов Гафуржан Маматкулович
RU2473884C1
УСТРОЙСТВО ДЛЯ ДЕТЕКТИРОВАНИЯ МЕТАЛЛИЧЕСКИХ ЧАСТИЦ В ПОТОКЕ СМАЗОЧНОГО МАТЕРИАЛА 2003
  • Маркова Любовь Васильевна
  • Мышкин Николай Константинович
  • Семенюк Михаил Саввич
  • Макаренко Владимир Михайлович
  • Колесников Алексей Валерьевич
  • Коклеев Валерий Иванович
RU2234080C1
МАГНИТОВЯЗКИЙ МАЯТНИК 2005
  • Меньших Олег Фёдорович
RU2291546C1

Иллюстрации к изобретению RU 2 390 012 C1

Реферат патента 2010 года СПОСОБ АНАЛИЗА ФЕРРОМАГНИТНЫХ ЧАСТИЦ В МАСЛЕ

Изобретение может быть использовано для определения степени износа пар трения. Способ анализа ферромагнитных частиц в масле согласно изобретению включает в себя поочередное воздействие на исследуемую пробу магнитным полем в разных направлениях, указанное магнитное поле является постоянным, при этом дополнительно в фиксированное направлении прикладывают переменное магнитное поле, параметры которого зависят от усредненной по объему масла дифференциальной магнитной проницаемости, а концентрацию частиц определяют на основании разницы этих параметров, измеренных при разных направлениях постоянного магнитного поля. Технический результат: избирательный анализ образующихся только в результате трения частиц неправильной формы. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 390 012 C1

1. Способ анализа ферромагнитных частиц в масле, включающий в себя поочередное воздействие на исследуемую пробу магнитным полем в разных направлениях, отличающийся тем, что указанное магнитное поле является постоянным, и дополнительно в фиксированном направлении прикладывают переменное магнитное поле, параметры которого зависят от усредненной по объему масла дифференциальной магнитной проницаемости, а концентрацию частиц определяют на основании разницы этих параметров, измеренных при разных направлениях постоянного магнитного поля.

2. Способ по п.1, отличающийся тем, что из вариантов направлений постоянного магнитного поля имеются перпендикулярные друг другу, из которых одно совпадает с направлением переменного магнитного поля.

3. Способ по п.1 или 2, отличающийся тем, что в качестве измеряемого параметра используют частоту переменного магнитного поля, возбуждаемого окружающей пробу электрической обмоткой, входящей в состав работающего в резонансном режиме колебательного контура.

Документы, цитированные в отчете о поиске Патент 2010 года RU2390012C1

УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ФЕРРОМАГНИТНЫХ ЧАСТИЦ ИЗНОСА В МАСЛЕ 1997
  • Степанов В.А.
  • Тулупов И.Ф.
  • Дмитриев Д.Ф.
  • Каджардузов П.А.
RU2131552C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ И РАЗМЕРА ЧАСТИЦ ПРИМЕСЕЙ В МАСЛЕ ИЛИ ТОПЛИВЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Петров Валерий Никитович
  • Кремешный Валерий Михайлович
RU2110783C1
Способ определения концентрации ферромагнитных частиц в масле 1985
  • Соон Антс Карлович
  • Пикнер Арви Георгович
SU1265578A1
US 4651092 A, 17.03.1987
US 5831151 A, 03.11.1998
DE 10258333 A1, 08.07.2004.

RU 2 390 012 C1

Авторы

Сергеев Святослав Михайлович

Лозовой Леонид Николаевич

Даты

2010-05-20Публикация

2009-03-16Подача