ЗАКРЫТАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА С ОХЛАЖДАЕМЫМ ЖИДКОСТЬЮ СТАТОРОМ Российский патент 2010 года по МПК H02K5/128 H02K9/19 

Описание патента на изобретение RU2395149C1

Данное изобретение относится к электрической машине, содержащей статор, ротор и закрытый корпус, который герметизирует ротор относительно статора.

Возникающее в обмотке электрических машин за счет потерь тепло необходимо отводить. Обычно это реализуется с помощью воздушного охлаждения.

В так называемых интегрированных машинах, т.е. рабочих и приводных машинах в корпусе, в котором пространство ротора и статора электрической приводной машины разделено закрытым корпусом, например трубой, охлаждение часто осуществляется с помощью технологической среды. Соответствующий электродвигатель с герметизирующим экраном в воздушном зазоре с разделительной пленочной трубой известен из публикации DE 10025190 А1. Служащий для центробежного насоса электродвигатель с герметизирующим экраном в воздушном зазоре снабжен разделительной трубой, которая разделяет выполненный в виде вращающегося в воде и соединенного без возможности проворачивания с валом двигателя ротора от соединенного без возможности проворачивания с корпусом двигателя статора. Разделительная труба выполнена из непроницаемой для жидкости пленки, и предусмотрены опорные элементы, которые удерживают и несут пленку.

Кроме того, в публикации DE 1528805 А раскрыт не содержащий сальникового ввода насос для высоких давлений, имеющий расположенный в герметичном корпусе электродвигатель с герметизирующим экраном в воздушном зазоре, в котором для выравнивания давления на разделительной трубе роторное пространство соединено с внутренним пространством пружинящего сильфона, на наружную сторону которого воздействует жидкостное наполнение в статорном пространстве. Пружинящий сильфон расположен внутри роторного корпуса в статорном пространстве. Через герметично закрываемое отверстие в статорное пространство заполняют жидкость, например изоляционное масло, которое окружает пружинящий сильфон. Машину можно охлаждать с помощью перекачиваемой жидкости, которая обтекает ротор в зазоре.

Кроме того, в публикации DE 1052541 А приведено описание закрытого асинхронного электродвигателя, который применяется в качестве подводного двигателя для привода насоса. Выступающие за торцевые концы статорного пакета части обмотки статора вместе с крепежным средством для подшипникового экрана заделаны в заливочную массу, например в литьевую смолу. На разделительной трубе в зоне ее торцевых концов в качестве уплотнительных элементов предусмотрены обеспечивающие жесткость фланцы, или кольца, или отбортованные края, которые также заделаны в заливочную массу.

Из публикации US 2285960 А известна динамоэлектрическая машина с ротором и закрытым относительно ротора статором. Статор охлаждается жидкостью в виде трансформаторного масла.

Аналогичная динамоэлектрическая машина известна из патента US 2381122 А.

Кроме того, в публикации DE 896086 С показана электрическая машина, в частности генератор с высокой скоростью вращения, содержащий отдельное, герметично закрытое пространство для статора и для ротора. Наряду с негорючим газом для охлаждения можно использовать также жидкое охлаждающее средство.

В публикациях US 2687695 A и US 3089969 A также раскрыты электрические машины, статоры которых закрыты и охлаждаются жидкостью. Для выравнивания давления в контуре охлаждения статора служит соответствующий выравнивающий резервуар.

Кроме того, в публикации WO 85/00475 показан охлаждаемый жидкостью синхронный электродвигатель с высокой скоростью вращения. Статор имеет канавки для элементов обмотки. В этих канавках размещены охлаждающие каналы.

Задачей данного изобретения является улучшение охлаждения закрытой электрической машины, так что такие машины могут работать также в диапазоне высоких скоростей вращения и с высокой мощностью.

Эта задача решена согласно изобретению с помощью электрической машины в соответствии с пунктом 1 формулы изобретения, содержащей статор, ротор и закрытый корпус, при этом статор имеет жидкостное охлаждающее устройство, с помощью которого обеспечивается возможность отвода тепла потерь статора, и при этом закрытый корпус образует часть наружной стенки замкнутого контура охлаждения в жидкостном охлаждающем устройстве.

Таким образом, обеспечивается возможность эффективного охлаждения статора, соответственно обмотки статора. Тем самым можно изготавливать машины с высокой скоростью вращения и большой мощностью в закрытом виде. В частности, можно реализовывать очень компактные статорные обмотки, которые невозможны при воздушном охлаждении.

Охлаждающая жидкость жидкостного охлаждающего устройства является содержащей сложный эфир жидкостью. Эта охлаждающая жидкость имеет требуемые диэлектрические свойства, так что могут быть реализованы также высоковольтные приводы.

Кроме того, ротор обтекается технологической средой, и между технологической средой и охлаждающей жидкостью статора в закрытом контуре охлаждения расположено компенсационное устройство для выравнивания давления. За счет выравнивания давления обеспечивается небольшая механическая нагрузка закрытого корпуса, соответственно трубы, что облегчает выбор материала относительно механических и электрических свойств.

Кроме того, компенсационное устройство имеет электрическое регулирование для активного выравнивания давления. За счет этого можно устранять проблемы герметизации, которые возникают иногда при чисто механических решениях выравнивания давления.

Кроме того, предпочтительно, когда лобовые части обмотки статора непосредственно обтекаются жидкостью жидкостного охлаждающего устройства. Для этого необходима охлаждающая жидкость с соответствующими диэлектрическими свойствами, которая обеспечивает эффективный отвод тепла от статора.

В соответствии с особым вариантом выполнения электрической машины согласно изобретению листовой пакет статора имеет осевые охлаждающие отверстия, которые являются частью замкнутого контура охлаждения. Тем самым можно также эффективно отводить тепло из пакета статора.

Кроме того, статор может иметь канавки для элементов обмотки, в которых расположены проходящие в осевом направлении охлаждающие каналы, которые также являются частью замкнутого контура охлаждения. Таким образом, достигается также эффективное охлаждение на поверхности статора в зоне обмоток.

Замкнутый контур охлаждения предпочтительно содержит противоточный охладитель для охлаждающей жидкости. Такой противоточный охладитель обеспечивает повышение коэффициента полезного действия охлаждения.

Кроме того, замкнутый контур охлаждения может содержать насос для поддержания охлаждающего потока. За счет этого также повышается производительность охлаждения.

Предпочтительное применение электрической машины согласно изобретению состоит в реализации в качестве компрессора для транспортировки технологической среды. В этом случае можно применять создаваемое в компрессоре давление одновременно также для нагнетания технологической среды через ротор.

Ниже приводится подробное пояснение изобретения со ссылками на прилагаемые чертежи, на которых изображено:

фиг.1 - блок-схема контуров охлаждения электрической машины согласно изобретению и

фиг.2 - разрез выполненного согласно изобретению компрессора.

Примеры выполнения, описание которых приводится ниже, являются предпочтительными вариантами выполнения данного изобретения.

На фиг.1 показана блок-схема контуров охлаждения закрытой электрической машины. Электродвигатель М электрической машины имеет ротор, который охлаждается с помощью контура RK охлаждения ротора, и статор, который охлаждается с помощью контура SK охлаждения статора. В зазоре между ротором и статором находится закрытый корпус К. Этот закрытый корпус К герметизирует контур RK охлаждения ротора от контура SK охлаждения статора. С помощью аккумулятора А осуществляется регулирование давления, соответственно выравнивание давления между контуром RK охлаждения ротора и контуром SK охлаждения статора.

В показанном примере контур SK охлаждения статора имеет для управления дополнительно клапан V. Кроме того, он имеет для улучшения охлаждения теплообменник WT в виде противоточного охладителя.

Конкретный пример выполнения показан на фиг.2. На чертеже показан разрез интегрированного компрессора. Он представляет электрическую машину, которая в герметичном корпусе G содержит электродвигатель М и компрессор КП. Корпус G образует вокруг статора S двигателя М статорное пространство SR. Для охлаждения статора это статорное пространство SR заполнено охлаждающей жидкостью, которая отвечает охлаждающим и диэлектрическим требованиям. Например, в качестве охлаждающей жидкости выбрана изоляционная жидкость, которая получена на основе сложного эфира или силиконового масла. Тем самым возможно непосредственное жидкостное охлаждение обмоток и, в частности, лобовых частей обмотки. Это охлаждение на основе текучей среды обеспечивает очень компактную обмотку статора.

В данном случае в листовом пакете статора для охлаждения предусмотрены охлаждающие отверстия КВ, через которые также проходит поток охлаждающей жидкости статорного пространства. Предусмотрено также не изображенное на чертеже охлаждение проводника в канавках листового пакета, для которого между элементами обмотки в каналах расположены осевые каналы охлаждения. Через эти каналы охлаждения также проходит поток охлаждающей жидкости. Таким образом, осуществляется непосредственное охлаждение зоны канавок, что способствует компактности машины за счет, например, отсутствия радиальных щелей охлаждения в листовом пакете.

Весь контур SK охлаждения статора обозначен на фиг.2 стрелками. Он проходит частично вне корпуса G, как это показано также на фиг.1. Там на чертеже показано также место теплообменника WT, который служит для противоточного охлаждения охлаждающей жидкости. На фиг.2 не изображены трубопроводы такой установленной системы охлаждения, соответственно насосов, которые поддерживают охлаждающий поток.

Статорное пространство SR отделено закрытым корпусом К, в данном случае трубой, от роторного пространства RR. Закрытый корпус проходит через зазор между ротором R и статором S. Между закрытым корпусом К и ротором R протекает поток RK охлаждения ротора в осевом направлении электрической машины. За счет разделения контуров охлаждения для ротора R и статора S можно применять не обработанную технологическую среду, которая транспортируется через компрессор КР, непосредственно для охлаждения ротора R.

Компрессор КР транспортирует технологическую среду от входного патрубка ES к выходному патрубку AS. При этом технологическая среда соответственно сжимается.

Компрессор КР служит для приведения в действие контура RK охлаждения ротора. Для этого технологическая среда покидает компрессорное пространство через фланец F1 и направляется через трубопровод на обращенной к электродвигателю торцевой стороне корпуса G через трубопровод к фланцу F2. Там она входит в корпус G и служит сначала для охлаждения расположенного там подшипника электродвигателя. Оттуда она проходит дальше к ротору, как это уже указывалось выше.

Часть технологической среды направляется от фланца F1 через трубопроводы на обращенной к компрессору торцевой стороне корпуса G к фланцу F3. Там эта часть охлаждающего потока входит снова в корпус G и служит там для охлаждения расположенного на стороне компрессора подшипника.

Выполнение компрессора в соответствии с примером, показанным на фиг.2, приводит к эффективному охлаждению как ротора, так и статора. Таким образом, компрессор можно выполнять для высоких скоростей вращения и высоких мощностей в мегаваттном диапазоне. Кроме того, за счет показанной на фиг.2 конструкции обеспечивается как для ротора, так и для статора простая в техническом обслуживании система охлаждения, что является предпосылкой, например, для применений под водой.

Похожие патенты RU2395149C1

название год авторы номер документа
ЭЛЕКТРИЧЕСКИЙ ГУСЕНИЧНЫЙ ХОДОВОЙ МЕХАНИЗМ, А ТАКЖЕ ЕГО ПРИМЕНЕНИЕ ДЛЯ САМОХОДНОЙ РАБОЧЕЙ МАШИНЫ 2011
  • Гранер Клаус
  • Лис Йоханн
RU2489295C2
САМОХОДНЫЙ НАЗЕМНЫЙ РОТОРНЫЙ ЭКСКАВАТОР С ЭЛЕКТРИЧЕСКИМ ПРИВОДОМ ФРЕЗ-БАРАБАНА 2011
  • Гранер Клаус
  • Лис Йоханн
RU2550619C2
ЦЕНТРОБЕЖНЫЙ КОМПРЕССОРНЫЙ АГРЕГАТ 2011
  • Андрианов Александр Васильевич
  • Архипов Александр Иванович
  • Ахметзянов Альберт Мингаязович
  • Габрахманов Руслан Ильгизович
  • Гузельбаев Яхия Зиннатович
  • Лунев Александр Тимофеевич
  • Страхов Геннадий Павлович
  • Харитонов Александр Петрович
RU2472043C1
ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ С ЖИДКОСТНЫМ ОХЛАЖДЕНИЕМ 2010
  • Дашко Олег Григорьевич
  • Кривоспицкий Юрий Прокопьевич
  • Литвинов Владимир Никонович
  • Машуров Сергей Иванович
  • Долголаптев Анатолий Васильевич
RU2422969C1
ТЕЛЕЖКА РЕЛЬСОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2019
  • Адам, Кристоф
  • Кёрнер, Олаф
  • Кютер, Кристиан
  • Шэфер-Энкелер, Андреас
  • Зайтц, Петер
  • Тайхман, Мартин
RU2752665C1
ЭЛЕКТРИЧЕСКАЯ МАШИНА С ЖИДКОСТНЫМ ОХЛАЖДЕНИЕМ СТАТОРА 2004
  • Кравченко Александр Игнатьевич
  • Матвеев Лев Иванович
  • Федоренко Римма Ивановна
RU2283525C2
ДИНАМОЭЛЕКТРИЧЕСКАЯ МАШИНА 2009
  • Аф Урсин Илькка
RU2524170C2
КОМПРЕССОРНЫЙ БЛОК 2009
  • Де Бур Герт
RU2461737C2
ЭЛЕКТРИЧЕСКАЯ МАШИНА С УЛУЧШЕННЫМ ОХЛАЖДЕНИЕМ 2015
  • Гранат Герд
  • Путц Вальтер
RU2643791C1
КОМПРЕССОРНЫЙ БЛОК И ПРИМЕНЕНИЕ ОХЛАЖДАЮЩЕЙ СРЕДЫ 2007
  • Баде Мария
  • Меле Аксель
  • Цварг Гюнтер
RU2394172C1

Иллюстрации к изобретению RU 2 395 149 C1

Реферат патента 2010 года ЗАКРЫТАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА С ОХЛАЖДАЕМЫМ ЖИДКОСТЬЮ СТАТОРОМ

Изобретение относится к области электротехники, в частности - к системам охлаждения закрытых электрических машин с охлаждаемым жидкостью статором. Предлагаемая электрическая машина содержит статор (S), ротор (R) и закрытый корпус (К), который герметизирует ротор (R) относительно статора (S). Для эффективного охлаждения статор имеет жидкостное охлаждающее устройство с соответствующим контуром (SK) охлаждения статора, а закрытый корпус (К) образует часть наружной стенки замкнутого контура (SK) охлаждения. При этом согласно изобретению ротор (R) обтекается технологической средой, между технологической средой и охлаждающей жидкостью статора (S) в закрытом контуре (SK) охлаждения расположено компенсационное устройство (А) для выравнивания давления, имеющее электрическое регулирование для активного выравнивания давления, а охлаждающая жидкость жидкостного охлаждающего устройства является жидкостью, содержащей сложный эфир. Технический результат, достигаемый при использовании данного изобретения, состоит в упрощении и повышении эффективности охлаждения закрытых электрических машин. 6 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 395 149 C1

1. Электрическая машина, содержащая
статор (S),
ротор (R) и
закрытый корпус (K), который герметизирует ротор (R) относительно статора (S), при этом
статор (S) имеет жидкостное охлаждающее устройство, с помощью которого обеспечивается возможность отвода тепла потерь статора (S), при этом
закрытый корпус (K) образует часть наружной стенки замкнутого контура (SK) охлаждения в жидкостном охлаждающем устройстве,
отличающаяся тем, что
ротор (R) обтекается технологической средой и между технологической средой и охлаждающей жидкостью статора (S) в закрытом контуре (SK) охлаждения расположено компенсационное устройство (А) для выравнивания давления,
компенсационное устройство (А) имеет электрическое регулирование для активного выравнивания давления и
охлаждающая жидкость жидкостного охлаждающего устройства является содержащей сложный эфир жидкостью.

2. Электрическая машина по п.1, в которой лобовые части обмотки статора (S) непосредственно обтекаются жидкостью жидкостного охлаждающего устройства.

3. Электрическая машина по п.1 или 2, в которой листовой пакет статора (S) имеет осевые охлаждающие отверстия (KB), которые являются частью замкнутого контура (SK) охлаждения.

4. Электрическая машина по п.1, в которой статор (S) имеет канавки для элементов обмотки, в которых расположены проходящие в осевом направлении охлаждающие каналы, которые также являются частью замкнутого контура (SK) охлаждения.

5. Электрическая машина по п.1, в которой замкнутый контур (SK) охлаждения имеет противоточный охладитель (WT) для охлаждающей жидкости.

6. Электрическая машина по п.1, в которой замкнутый контур (SK) охлаждения содержит насос для поддержания охлаждающего потока.

7. Электрическая машина по 1, которая выполнена в виде компрессора (KР) для транспортировки технологической среды.

Документы, цитированные в отчете о поиске Патент 2010 года RU2395149C1

Устройство для выпрямления опрокинувшихся на бок и затонувших у берега судов 1922
  • Демин В.А.
SU85A1
СВЕРХПРОВОДЯЩЕЕ ВРАЩАЮЩЕЕСЯ УСТРОЙСТВО 1991
  • Такеси Матсуда[Jp]
  • Кенити Сузуки[Jp]
  • Тосиюки Айба[Jp]
RU2100892C1
СИНХРОННАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА СО СВЕРХПРОВОДНИКОВЫМИ ОБМОТКАМИ 1990
  • Болюх Владимир Федорович[Ua]
  • Данько Владимир Григорьевич[Ua]
  • Кожемякин Сергей Михайлович[Ua]
  • Станкевич Анатолий Иванович[Ua]
RU2086067C1
СИСТЕМА ОХЛАЖДЕНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ ЗАКРЫТОГО ИСПОЛНЕНИЯ 2001
  • Постников А.С.
  • Гераскин А.Г.
  • Гриников Ю.А.
  • Климов Н.С.
  • Савонькин Н.П.
  • Хмыз В.П.
  • Канискин Н.А.
RU2201647C2
Статор электрической машины 1983
  • Кузьмин Николай Федорович
  • Суханов Лев Александрович
  • Лошкарев Владимир Павлович
  • Сапунов Георгий Константинович
SU1116498A1
УЧЕБНЫЙ ПРИБОР ДЛЯ ДЕМОНСТРАЦИИ ВТОРОГО УРАВНЕНИЯ МАКСВЕЛЛА 2005
  • Белокопытов Руслан Алексеевич
  • Ковнацкий Валерий Константинович
RU2285960C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВРЕМЕНИ ПРОРЫВА ПРЕДОТВРАЩАЮЩИХ ПРОСАЧИВАНИЕ ПОДКЛАДОК НА СВАЛКЕ 2017
  • Чжу Вэй
  • Шу Ши
  • Ван Шэнвэй
  • Сюй Хаоцин
  • Фань Сихуэй
RU2687695C1
US 3089969 A, 14.05.1963
Стальной трубчатый котел с одинаковыми секциями, имеющими замкнутый контур 1950
  • Титов Д.А.
SU89086A1
СПОСОБ РЕГУЛИРОВАНИЯ СЦЕПЛЕНИЯ КОЛЕС ПОДВИЖНОГО СОСТАВА С РЕЛЬСАМИ 2008
  • Лужнов Юрий Михайлович
  • Богданов Виктор Михайлович
  • Ромен Юрий Семенович
RU2381122C1
Устройство управления распределением компонента комбинированного дутья по фурмам доменной печи 1982
  • Шамшетдинов Валиулла Месудович
  • Голубовский Петр Арсениевич
SU1052541A1
Покровный флюс для плавки и литья сплавов на основе золота, серебра и меди 1988
  • Майоренко Вадим Маркович
  • Литовченко Иван Иванович
  • Шелюх Олег Алексеевич
SU1528805A1
DE 10025190 A1, 06.12.2001.

RU 2 395 149 C1

Авторы

Бетге Андреас

Меле Аксель

Олбрих Ирене

Риссе Йоахим

Вальтер Хартмут

Даты

2010-07-20Публикация

2007-10-16Подача