Изобретение относится к измерительной технике и может быть использовано для бесконтактного контроля температурных режимов прокатных станов, металлургических и энергетических установок в различных отраслях промышленности и жилищно-коммунальном хозяйстве.
Известно информационно-измерительное устройство температурной диагностики контролируемых объектов (патент GB №972394, кл. G01N, 1963), содержащее оптический пирометрический преобразователь температуры в электрический сигнал в виде оптической системы с фотоприемником и согласующий усилитель.
Недостатком его является достаточно высокая погрешность измерения, вносимая святящимися образованиями в продуктах сгорания контролируемого объекта.
За прототип принято устройство для дистанционного измерения температуры объектов (патент РФ №62700, кл. G01J 15/10, 2007), содержащее соединенные волоконным световодом оптический и измерительный блоки. Оптический блок содержит последовательно соединенные стеклянное окно, прозрачное в инфракрасном диапазоне, и линзу, фокусирующую световой поток на входной торец волоконного световода. Измерительный блок содержит последовательно соединенные фотоприемник в виде фотодиода, усилитель, аналого-цифровой преобразователь, микроконтроллер, выходы которого соединены с жидкокристаллическим индикатором и интерфейсом для связи с персональным компьютером.
Недостатком данного устройства является относительно узкий диапазон измеряемых температур.
Задача, на решение которой направлено изобретение, заключается в расширении диапазона измеряемых температур.
Поставленная задача решается за счет того, что в устройстве для дистанционного измерения температуры объектов, содержащем оптический блок, в котором последовательно размещены стеклянное окно, прозрачное в инфракрасном диапазоне, фокусирующая линза и входной торец волоконного световода, и измерительный блок, соединенный с оптическим блоком волоконным световодом, содержащий последовательно соединенные фотоприемник, усилитель, аналого-цифровой преобразователь, микроконтроллер, выходы которого соединены с жидкокристаллическим индикатором и интерфейсом для связи с персональным компьютером, в отличие от прототипа, выходной торец волоконного световода соединен с введенным акустооптическим перестраиваемым фильтром, выход которого соединен со входом измерительного блока, а выход управления измерительного блока связан с управляющим входом акустооптического перестраиваемого фильтра.
Кроме того, согласно изобретению в измерительном блоке фотоприемник выполнен в виде линейки фотодиодов.
На фиг.1 изображена структурная схема оптического преобразователя температуры. На фиг.2 показана структурная схема измерительного блока.
Оптический блок 1 содержит последовательно соединенные стеклянное окно, прозрачное в инфракрасном диапазоне 2, и линзу 3, фокусирующую световой поток на входной торец волоконного световода 4, выходной торец которого соединен с акустооптическим перестраиваемым фильтром 5, выход которого соединен со входом измерительного блока 6, а выход управления измерительного блока связан с управляющим входом акустооптического перестраиваемого фильтра. Измерительный блок содержит последовательно соединенные фотоприемник в виде линейки фотодиодов 7, усилитель 8, аналого-цифровой преобразователь 9, микроконтроллер 10, выходы которого соединены с жидкокристаллическим индикатором 11 и интерфейсом 12 для связи с персональным компьютером.
Заявляемое устройство работает следующим образом.
Электромагнитная волна в виде светового потока, излучаемая объектом, температуру которого необходимо измерить, проходит через стеклянное окно прозрачное в инфракрасном диапазоне 2 и фокусируется линзой 3 на входной торец волоконного световода 4. С выходного торца световой поток попадает на акустооптический перестраиваемый фильтр и в результате его дифракции на акустических волнах, пропускается лишь монохроматический поток с эффективной длиной волны λэф. Перестройка акустооптического перестраиваемого фильтра осуществляется по управляющему сигналу от микроконтроллера 10. Пропущенное, акустооптическим перестраиваемым фильтром, монохроматическое оптическое излучение с эффективной длиной волны λэф попадает на линейку фотодиодов. В зависимости от температуры акустооптический перестраиваемый фильтр пропускает определенную эффективную длину волны излучения, которая попадает на соответствующий фотодиод с максимумом чувствительности в области пропускания акустооптического перестраиваемого фильтра. Электрический сигнал с выхода фотоприемника усиливается усилителем 8 до уровня, необходимого для корректной работы аналого-цифрового преобразователя 9, который преобразует аналоговый сигнал в цифровой код. Цифровой сигнал поступает на вход микроконтроллера 10, который осуществляет управление всеми компонентами измерительного блока, акустооптическим перестраиваемым фильтром и отображает данные измерения на жидкокристаллическом индикаторе 11, а также поддерживает связь устройства через интерфейс 12 с персональным компьютером.
Таким образом, применение в качестве оптического селективного фильтра акустооптического перестраиваемого фильтра и фотоприемника, выполненного в виде линейки фотодиодов, позволяет расширить диапазон измеряемых температур.
название | год | авторы | номер документа |
---|---|---|---|
Волоконно-оптический преобразователь | 1990 |
|
SU1747896A1 |
ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК КОНЦЕНТРАЦИИ ГАЗА | 1992 |
|
RU2045045C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ИЗНОСА ТРУЩИХСЯ ПОВЕРХНОСТЕЙ | 1995 |
|
RU2089880C1 |
ВЫСОКОТОЧНЫЙ АКУСТООПТИЧЕСКИЙ ПРИЕМНИК-ЧАСТОТОМЕР | 1999 |
|
RU2149510C1 |
ИЗМЕРИТЕЛЬ СПЕКТРОВ СИГНАЛОВ ОТКЛИКОВ АТОМНЫХ ЭЛЕМЕНТОВ НА ПРОНИКАЮЩЕЕ ОБЛУЧЕНИЕ | 2009 |
|
RU2395103C1 |
ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА КОНТРОЛЯ ТОЛЩИНЫ И МАССЫ ДИЭЛЕКТРИЧЕСКИХ ПЛОСКИХ ИЗДЕЛИЙ | 2018 |
|
RU2701783C2 |
УСТРОЙСТВО ДЛЯ СЧИТЫВАНИЯ ГРАФИЧЕСКОЙ И ТЕКСТОВОЙ ИНФОРМАЦИИ | 1999 |
|
RU2237282C2 |
АНАЛИЗАТОР СПЕКТРА СИГНАЛОВ ОПТИЧЕСКОГО ДИАПАЗОНА | 2003 |
|
RU2239802C1 |
УСТРОЙСТВО ДИСТАНЦИОННОГО КОНТРОЛЯ АТМОСФЕРЫ | 2002 |
|
RU2226269C2 |
СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ САХАРА И САХАРИМЕТР ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2002 |
|
RU2224240C2 |
Изобретение относится к измерительной технике и может быть использовано для бесконтактного контроля температурных режимов прокатных станов, металлургических и энергетических установок. Устройство для дистанционного измерения температуры объектов содержит оптический и измерительный блоки. В оптическом блоке последовательно размещены стеклянное окно, прозрачное в инфракрасном диапазоне, фокусирующая линза и входной торец волоконного световода. Измерительный блок содержит последовательно соединенные фотоприемник, выполненный в виде линейки фотодиодов, усилитель, аналого-цифровой преобразователь и микроконтроллер, выходы которого соединены с жидкокристаллическим индикатором и интерфейсом для связи с персональным компьютером. Выходной торец волоконного световода соединен с акустооптическим перестраиваемым фильтром, выход которого соединен со входом измерительного блока, а выход управления измерительного блока связан с управляющим входом акустооптического перестраиваемого фильтра. Технический результат - расширение диапазона измеряемых температур. 1 з.п. ф-лы, 2 ил.
1. Устройство для дистанционного измерения температуры объектов, содержащее оптический блок, в котором последовательно размещены стеклянное окно, прозрачное в инфракрасном диапазоне, фокусирующая линза и входной торец волоконного световода, и измерительный блок, соединенный с оптическим блоком волоконным световодом, содержащий последовательно соединенные фотоприемник, усилитель, аналого-цифровой преобразователь, микроконтроллер, выходы которого соединены с жидкокристаллическим индикатором и интерфейсом для связи с персональным компьютером, отличающееся тем, что выходной торец волоконного световода соединен с введенным акустооптическим перестраиваемым фильтром, выход которого соединен со входом измерительного блока, а выход управления измерительного блока связан с управляющим входом акустооптического перестраиваемого фильтра.
2. Устройство по п.1, отличающееся тем, что в измерительном блоке фотоприемник выполнен в виде линейки фотодиодов.
Способ выделения битартрата калия из использованной при определении сахара феллинговой жидкости | 1941 |
|
SU62700A1 |
ВОЛОКОННО-ОПТИЧЕСКИЙ ТЕРМОМЕТР | 2004 |
|
RU2272259C1 |
Двухколокольный дифференциальный манометр-расходомер воздуха или газов | 1948 |
|
SU81323A1 |
Устройство для управления циклоконвертором с прямоугольным управляющим напряжением | 1973 |
|
SU588611A1 |
Авторы
Даты
2010-09-20—Публикация
2009-06-15—Подача