Изобретение относится к электрохимической обработке поверхности металлических изделий, в частности к электрохимическому полированию поверхности из магниевых сплавов, таких как кронштейны, поковки, штамповки, крышки, диски автомобильных колес, корпуса ноутбуков, мобильных телефонов, и может быть использовано в ракетно-космической технике, автомобилестроении, электронной промышленности и других отраслях народного хозяйства.
Магниевые сплавы, относящиеся к группе наиболее легких металлических конструкционных материалов, обладают пониженной коррозионной стойкостью, поэтому при эксплуатации магниевых узлов и деталей необходимо подвергать их поверхность обработке для последующего нанесения защитных антикоррозионных покрытий.
Известен способ обработки поверхности изделий из магниевых сплавов, включающий погружение изделия, используемого в качестве катода, в раствор для электрохимического полирования, установку анода из стальных пластин и электрохимическое полирование при температуре 80-90°С, напряжении 4-6 В, выдержке в течение 3-4 мин. Раствор для электрохимического полирования имеет следующий химический состав, г/л:
или
Далее изделие промывают в воде и сушат. (М.А.Тимонова «Защита от коррозии магниевых сплавов», М., «Металлургия», 1977 г., с.40-42).
Недостатком известного способа является то, что он не позволяет получить высокий класс чистоты поверхности (свыше 7), т.е. показатель параметров шероховатости Rz (высота неровностей профиля по десяти точкам) не менее Rz=6,3 мкм по ГОСТ 2789.
Известен способ обработки поверхности изделий из магниевых сплавов, включающий погружение изделия, используемого в качестве анода, в раствор для электрохимического полирования при поддержании первоначального напряжения, обеспечивающего плотность тока (1,5-2,5) А/дм2, затем постоянно увеличивают напряжение до (240-330) В для сохранения первоначальной плотности тока, время выдержки 5-30 мин. Водный раствор для электрохимического полирования используется при температуре (20-40)°С, имеет рН=7-10 при следующем соотношении компонентов:
для сохранения рН=7 -10 (Патент США №7094327)
Недостатками известного способа являются высокая энергоемкость процесса и наличие в растворе для электрохимического полирования токсичной плавиковой кислоты.
Известен способ обработки металлических изделий, включающий погружение изделия, используемого в качестве анода, в раствор для электрохимического полирования, установку катода из нержавеющей стали, проведение электрохимического полирования при плотности тока ≤2 А/дм2, напряжении 8-24 В, в котором раствор для электрохимического полирования, имеет следующий химический состав, масс.%:
(а.с. №779453)
Недостатком известного способа является пониженный класс чистоты поверхности металлических изделий.
Наиболее близким аналогом, взятым за прототип, является способ обработки поверхности магниевых сплавов, включающий погружение изделия, используемого в качестве анода, в раствор для электрохимического полирования, установку катода из нержавеющей стали, проведение электрохимического полирования при плотности тока ≥2 А/дм2, напряжении 8-17 В, в котором раствор для электрохимического полирования, имеет следующий химический состав, масс.%:
(Патент РФ №2023767)
Недостатками прототипа являются возможность получения на поверхности изделия пор и различных дефектов, понижение класса чистоты и увеличение значения Rz, что вызвано воздействием на поверхность электрохимического раствора с высокой концентрацией активных веществ, в том числе токсичной серной кислоты.
Технической задачей изобретения является разработка способа обработки поверхности магниевых сплавов, позволяющего повысить класс чистоты поверхности изделий из магниевых сплавов до 11-12, т.е. снизить значения Rz до ~0,2-0,4 мкм и исключить токсичные компоненты.
Поставленная техническая задача достигается тем, что предложен способ обработки поверхности магниевых сплавов, включающий погружение изделия, используемого в качестве анода, в раствор для электрохимического полирования, содержащий ортофосфорную и уксусную кислоты, установку катода из нержавеющей стали, проведение электрохимического полирования, в котором электрохимическое полирование ведут при плотности тока - 15-25 А/дм2, напряжении 3-7 В, в течение 10-180 с, а раствор для электрохимического полирования дополнительно содержит этиловый спирт при следующем соотношении компонентов, масс.%:
Установлено, что заявленные содержание и соотношение компонентов в растворе для электрохимического полирования поверхности магниевых сплавов при заявленных плотности тока, напряжении и времени выдержки предотвращают образование шлама, не допускают потерь самого металла в процессе электрохимического полирования поверхности. При этом предлагаемый способ способствует равномерному стравливанию шероховатостей на поверхности изделия, а образование на поверхности нерастворимых гидрофосфатов металлов предотвращает последующее растравливание поверхности.
Таким образом, использование предлагаемого способа обеспечивает повышение класса чистоты поверхности изделий из магниевых сплавов до 11-12, т.е. снижение значений Rz до ~0,2-0,4 мкм, при этом позволит применить нетоксичные компоненты.
Примеры осуществления
Изделие выполнено из сплава МА14 (кронштейн).
Для обработки поверхности изделия из магниевого сплава МА14 приготавливали электрохимический раствор следующего химического состава, масс.%: ортофосфорная кислота Н3РО4 (удельной плотности не менее 1,75 г/см3) - 35, ледяная уксусная кислота СН3СООН - 2, остальное - этиловый спирт С2Н5ОН (концентрации не менее 96%).
В полученный раствор погружали изделие из сплава МА14, используемое в качестве анода, устанавливали катод из нержавеющей стали. Обработку поверхности изделия из магниевого сплава МА14 проводили при плотности тока 15 А/дм2, напряжении 3 В в течение 10 с.
После полирования изделие промывали в воде при комнатной температуре и сушили.
Примеры 2, 3 осуществляли аналогично примеру 1. Параметры предлагаемого способа обработки поверхности изделия из сплава МА14 и способа-прототипа (пример 4), а также полученные свойства приведены в табл.1.
Изделие выполнено из сплава МА20 (подлокотник кресла).
Для обработки поверхности изделия из магниевого сплава МА20 приготавливали электрохимический раствор следующего химического состава, масс.%: ортофосфорная кислота Н3РO4 (удельной плотности не менее 1,75 г/см3) - 45, ледяная уксусная кислота СН3СООН - 10, остальное - этиловый спирт С2Н5ОН (концентрации не менее 96%).
В полученный раствор погружали изделие из сплава МА20, используемое в качестве анода, устанавливали катод из нержавеющей стали. Электрохимическое полирование поверхности изделия из магниевого сплава МА20 проводили при плотности тока 25 А/дм2, напряжении 7 В в течение 180 с. После электрохимического полирования изделие промывали в воде при комнатной температуре и сушили (пример 5).
Примеры 6, 7 осуществляли аналогично примеру 5. Параметры предлагаемого способа обработки поверхности изделия из сплава МА20 и способа-прототипа (пример 8), а также полученные свойства приведены в табл.1.
Изделие выполнено из сплава МА2-1 (приборная панель).
Для обработки поверхности изделия из магниевого сплава МА2-1 приготавливали электрохимический раствор следующего химического состава, масс.%: ортофосфорная кислота Н3РO4 (удельной плотности не менее 1,75 г/см3) - 40, ледяная уксусная кислота СН3СООН - 6, остальное - этиловый спирт С2Н5ОН (концентрации не менее 96%).
В полученный раствор погружали изделие из сплава МА2-1, используемое в качестве анода, устанавливали катод из нержавеющей стали. Обработку поверхности изделия из сплава МА2-1 проводили при плотности тока 20 А/дм2, напряжении 5 В в течение 10 с. После полирования изделие промывали в воде при комнатной температуре и сушили (пример 9).
Примеры 10, 11 осуществляли аналогично примеру 9. Параметры предлагаемого способа обработки поверхности изделия из сплава МА2-1 и способа-прототипа (пример 12), а также полученные свойства приведены в табл.1.
Как следует из анализа результатов, представленных в таблице 1, предлагаемый способ обработки поверхности изделий из магниевых сплавов позволяет повысить класс чистоты поверхности до 11-12, т.е. снизить значение Rz до ~0,2-0,4 мкм, при этом в предлагаемом способе используются нетоксичные компоненты.
Высокая эффективность и безопасность предлагаемого способа обработки поверхности магниевых сплавов, возможность использования обработанной поверхности для последующего нанесения защитных покрытий и окончательной обработки повышает ресурс и надежность изделий из магниевых сплавов.
жки, с
мый способ
мый способ
мый способ
название | год | авторы | номер документа |
---|---|---|---|
РАСТВОР ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛИРОВАНИЯ МЕТАЛЛОВ | 1990 |
|
RU2023767C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА МАГНИЕВЫХ СПЛАВАХ | 2011 |
|
RU2447202C1 |
Раствор для электрохимического полирования металлической поверхности | 1978 |
|
SU779453A1 |
СПОСОБ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ МЕТАЛЛОВ | 2014 |
|
RU2550393C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МЕТАЛЛОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ВЕНТИЛЬНЫХ МЕТАЛЛАХ И ИХ СПЛАВАХ | 2013 |
|
RU2543659C1 |
Способ электрохимического полирования меди | 1989 |
|
SU1768674A1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ СЕРЕБРА | 2003 |
|
RU2231579C1 |
Способ изготовления сферического ротора криогенного гироскопа | 2018 |
|
RU2680261C1 |
СПОСОБ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ МЕТАЛЛОВ | 2013 |
|
RU2537346C1 |
Способ получения композиционного металл-алмазного покрытия на поверхности медицинского изделия, дисперсная система для осаждения металл-алмазного покрытия и способ ее получения | 2020 |
|
RU2746730C1 |
Изобретение относится к электрохимической обработке поверхности металлических изделий, в частности к электрохимическому полированию поверхности из магниевых сплавов, таких как кронштейны, поковки, штамповки, крышки, диски автомобильных колес, корпуса ноутбуков, мобильных телефонов, и может быть использовано в ракетно-космической технике, автомобилестроении, электронной промышленности и других отраслях народного хозяйства. Способ включает погружение изделия, используемого в качестве анода, в раствор для электрохимического полирования, содержащий ортофосфорную и уксусную кислоты, установку катода из нержавеющей стали, проведение электрохимического полирования, при этом электрохимическое полирование ведут при плотности тока 15-25 А/дм2 и напряжении 3-7 В в течение 10-180 с, а раствор для электрохимического полирования дополнительно содержит этиловый спирт при следующем соотношении компонентов, мас.%: ортофосфорная кислота 35-45, уксусная кислота 2-10, этиловый спирт остальное. Техническим результатом является разработка способа обработки поверхности магниевых сплавов, позволяющего повысить класс чистоты поверхности изделий из магниевых сплавов до 11-12, т.е. снизить значения Rz до ~0,2-0,4 мкм и исключить токсичные компоненты. 1 табл.
Способ обработки поверхности магниевых сплавов, включающий погружение изделия, используемого в качестве анода, в раствор для электрохимического полирования, содержащий ортофосфорную и уксусную кислоты, установку катода из нержавеющей стали, проведение электрохимического полирования, отличающийся тем, что электрохимическое полирование ведут при плотности тока 15-25 А/дм2 и напряжении 3-7 В в течение 10-180 с, а раствор для электрохимического полирования дополнительно содержит этиловый спирт при следующем соотношении компонентов, мас.%:
РАСТВОР ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛИРОВАНИЯ МЕТАЛЛОВ | 1990 |
|
RU2023767C1 |
RU 94014674 A1, 10.04.1996 | |||
KR 20060129415 A, 15.12.2006 | |||
US 2005072685 A1, 07.04.2005 | |||
Устройство контроля дискретного канала связи | 1980 |
|
SU862381A2 |
Авторы
Даты
2010-11-10—Публикация
2009-10-28—Подача