ЭЛЕКТРОМАГНИТНЫЙ ФИЛЬТР С ПРОСТРАНСТВЕННО-ПЕРИОДИЧНОЙ СТРУКТУРОЙ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ Российский патент 2010 года по МПК B01D35/06 B03C1/31 

Описание патента на изобретение RU2403950C2

Изобретение относится к устройствам для очистки жидкости от ферромагнитных коллоидных частиц и может быть использовано в различных отраслях промышленности, в частности для сепарации сульфида железа из потока вязкой нефти.

Известен высокоградиентный магнитный фильтр для очистки водных и газовых потоков от примесей. Фильтр содержит корпус из немагнитного материала с входным и выходным штуцерами, пористую фильтрующую матрицу из ферромагнитного материала и кольцевую магнитную систему с осевой намагниченностью на основе постоянных магнитов, расположенную снаружи корпуса. Магнитная система содержит магниты, каждый из которых обращен одноименными полюсами друг к другу, и полюсные наконечники между ними толщиной не более половины высоты магнитов. По оси фильтра размещен цилиндрический стержень из магнитно-мягкого материала с диаметром 0,3-0,5 внутреннего диаметра (см. патент РФ №2203124, МПК B01D35/06, B03C 1/00).

Однако матрица изготавливается из металлической ваты, имеющей большое гидродинамическое сопротивление. Для регенерации требуется матрицу извлекать из фильтра и промывать, затем устанавливать обратно. Это требует дополнительных временных и физических затрат.

Известен электромагнитный фильтр, включающий емкость с установленными на ее внешней поверхности электромагнитными катушками и сетку внутри емкости, поддерживающую насыпанный на нее слой ферромагнитных элементов. Сверху на этот слой, после включения электромагнита, подают очищаемую жидкость (см. авторское свидетельство №848064, МПК B03C 1/30).

К недостаткам данной конструкции следует отнести низкую производительность при фильтрации вязких сред, к которым относится, например, нефть с механическими примесями. Затруднена и его быстрая регенерация, так как промывочную жидкость надо подавать под давлением, что требует дополнительных устройств и энергозатрат, или осуществлять выгрузку - загрузку ферромагнитных элементов.

Наиболее близким к предлагаемому изобретению является электромагнитный фильтр, содержащий емкость из немагнитного материала с хаотичной засыпкой из мелких стальных шариков (см. патент GB №2047918, МПК B01D 35/06). После включения электромагнитов, расположенных на внешней поверхности емкости, в полостях между шариками создается высокоградиентное магнитное поле, осуществляющее фильтрацию коллоидных ферромагнитных частиц из потока жидкости, просачивающейся сквозь слой засыпки.

Этот фильтр имеет те же недостатки, что и предыдущая конструкция - низкая производительность при очистке вязких сред за счет большого гидродинамического сопротивления, затрудненная регенерация.

Задачей предлагаемого изобретения является разработка электромагнитного фильтра высокой производительности с низким гидродинамическим сопротивлением, предназначенного для удаления магнитных частиц из нефти, в частности сульфида железа.

Технический результат заключается в возможности удаления из вязкой жидкости, имеющей повышенное содержание смолисто-асфальтеновых компонентов, диспергированных ферромагнитных частиц.

Поставленная задача достигается тем, что в электромагнитном фильтре, включающем цилиндрический корпус из немагнитного материала, внутри которого размещены фильтрующие элементы, и намагничивающую систему, расположенную снаружи корпуса, согласно решению фильтрующие элементы выполнены из магнитомягкого материала в виде цилиндров с фасками на торцах, которые жестко закреплены на продольных траверсах из немагнитного материала и разнесены в пространстве друг относительно друга, образуя трехмерную упорядоченную структуру, при этом продольные траверсы закреплены на поперечных потоку жидкости траверсах из немагнитного материала, образуя кассету, состоящую из двух вставляющихся с продольным сдвигом друг в друга матриц, каждая из которых представляет собой разнесенные в пространстве два кольца из немагнитного материала с набором поперечных траверс.

Изобретение поясняется чертежами, где на фиг.1 приведен фильтр в поперечном разрезе, на фиг.2 - траверса с фильтрующими элементами, на фиг.3 - фрагмент фильтрующей кассеты, на фиг.4 - сечение А-А на фиг.3 без катушек электромагнита,

где 1 - кольца матриц;

2 - поперечные траверсы;

3 - продольные траверсы;

4 - фильтрующие элементы;

5 - внешний электромагнит;

6 - цилиндрический корпус (труба);

7 - кассета.

Электромагнитный фильтр состоит из кассеты 7, внутри которой размещены фильтрующие элементы 4, имеющие форму цилиндров с фасками на торцах, закрепленные на продольных траверсах 3, которые в свою очередь крепятся к поперечным траверсам 2 колец 1. Вся кассета помещена в цилиндрический корпус (трубу) 6.

Фильтрующие элементы изготовлены из магнитомягкой стали Ст 10 ГОСТ 360-76 с антикоррозийным покрытием, корпус (труба) изготовлен из немагнитной стали 08×18Н10Т ГОСТ 11068-81. Возможно применение и других материалов с соответствующими магнитными свойствами.

Промывка кассеты 7 осуществляется потоком воды при отключенном питании электромагнита 5.

Кассета 7 состоит из двух вставляющихся с продольным сдвигом друг в друга матриц, каждая из которых представляет собой разнесенные в пространстве два кольца 1 с набором поперечных потоку жидкости траверс 2, к которым крепятся продольные потоку траверсы 3 с фильтрующими элементами 4.

Таким образом, при движении внутри корпуса (трубы) жидкость проходит сквозь трехмерную упорядоченную структуру фильтрующих элементов, закрепленных со сдвигом друг относительно друга, как показано на фиг.3.

Траверсы 2, 3 и кольца 1 изготавливаются из немагнитной стали 12×18Н10Т ГОСТ 5632-72. Возможно применение и другого материала с соответствующими магнитными свойствами.

Размеры элементов и их число выбираются в зависимости от заданной пропускной способности фильтра и требуемой степени обработки жидкости и могут составлять: длина кассеты ~270 мм, диаметр фильтрующих элементов 4-5 мм, продольное расстояние между фильтрующими элементами 5-7 мм, диаметр продольных траверс 2 мм, ширина колец матриц и поперечных траверс 2 мм, длина фильтрующего элемента 7 мм, внешний диаметр колец матриц 68 мм, общее число траверс ~30-40 шт., расстояние между траверсами порядка 10 мм, общее число фокусирующих элементов ~700-800 шт.

Кассета 7 жестко фиксируется в цилиндрическом корпусе 6. Конструкция узла фиксации на чертеже не показана, может быть произвольной в зависимости от условий применения фильтрующего элемента и места его установки.

В случае фильтрации агрессивных сред на элементы конструкции наносится антикоррозийное покрытие из диамагнитного материала.

Устройство работает следующим образом. После включения внешнего электромагнита 5 фильтрующие элементы 4 намагничиваются. На противоположных концах фильтрующих элементов 4 появляются северный и южный полюса. За счет фасок и свободного пространства между фильтрующими элементами 4 в области протекания жидкости образуется неоднородное высокоградиентное магнитное поле, обеспечивающее условия для сепарации магнитных частиц и их осаждение на фильтрующих элементах 4.

При промывке фильтра электромагнит выключается, фильтрующие элементы быстро размагничиваются (0,1-0,5 с), через кассету пропускается вода, смывающая слабосцепленные с поверхностью фильтрующих элементов ферромагнитные коллоидные частицы.

Отсутствие засоряющихся механическими примесями пористых фильтрующих материалов, например, изготовленных из металлической ваты, повышает рабочий ресурс предлагаемого фильтра.

Осаждающиеся на фильтрующих элементах ферромагнитные частицы делают их поверхность шероховатой, что улучшает способность фильтра к захвату и немагнитных частиц, повышая степень очистки жидкости.

Фильтр легко промывается, что позволяет использовать его многократно.

Похожие патенты RU2403950C2

название год авторы номер документа
ВЫСОКОГРАДИЕНТНЫЙ МАГНИТНЫЙ ФИЛЬТР 2001
  • Гусев Б.А.
RU2190453C1
ВЫСОКОГРАДИЕНТНЫЙ МАГНИТНЫЙ ФИЛЬТР 2007
  • Гусев Борис Александрович
  • Кирпиков Денис Александрович
RU2360740C1
ВЫСОКОГРАДИЕНТНЫЙ НЕОДИМОВЫЙ МАГНИТНЫЙ СЕПАРАТОР С ФЕРРОМАГНИТНЫМ КАРТРИДЖЕМ 2018
  • Быков Игорь Юрьевич
  • Цхадая Николай Денисович
  • Лютоев Александр Анатольевич
  • Смирнов Юрий Геннадиевич
RU2752892C2
ВЫСОКОГРАДИЕНТНЫЙ МАГНИТНЫЙ ФИЛЬТР 1990
  • Гусев Б.А.
  • Ефимов А.А.
  • Михайлов Н.Н.
  • Смирнова М.Н.
  • Чилипенко Л.Л.
  • Москвин Л.Н.
SU1785104A1
МАГНИТНЫЙ ФИЛЬТР 1999
  • Данченко Ю.В.
RU2160148C1
ВЫСОКОГРАДИЕНТНЫЙ МАГНИТНЫЙ ФИЛЬТР 2002
  • Гусев Б.А.
  • Чилипенко Л.Л.
  • Козлов Е.П.
  • Ковалев С.М.
  • Харахнин С.Н.
  • Тищенко В.Н.
RU2203124C1
Фильтр для очистки жидкости 1990
  • Апарин Анатолий Федорович
  • Журавлев Валерий Станиславович
  • Жувагин Юрий Владимирович
  • Сухарников Сергей Прокофьевич
  • Петров Юрий Александрович
SU1766455A1
СПОСОБ МАГНИТНОЙ СЕПАРАЦИИ МАТЕРИАЛОВ И МАГНИТНЫЙ СЕПАРАТОР 2009
  • Федоров Олег Леонидович
  • Скроботова Татьяна Владимировна
RU2390381C1
Фильтрующая насадка для электромагнитных фильтров 1988
  • Горелов Иван Стефанович
  • Кольцов Михаил Васильевич
  • Котов Владимир Васильевич
  • Данилова Галина Николаевна
SU1567245A1
СПОСОБ РАЗДЕЛЕНИЯ ОТНОСИТЕЛЬНО МАГНИТНЫХ МИНЕРАЛЬНЫХ ЧАСТИЦ 1992
  • Корнелис Вильхельмюс Нотебарт[Nl]
  • Франк Петер Ван Дер Меер[Nl]
RU2070097C1

Иллюстрации к изобретению RU 2 403 950 C2

Реферат патента 2010 года ЭЛЕКТРОМАГНИТНЫЙ ФИЛЬТР С ПРОСТРАНСТВЕННО-ПЕРИОДИЧНОЙ СТРУКТУРОЙ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ

Изобретение относится к устройствам для очистки жидкости от ферромагнитных коллоидных частиц и может быть использовано в различных отраслях промышленности, в частности для сепарации сульфида железа из потока вязкой нефти. Электромагнитный фильтр включает цилиндрический корпус 6 из немагнитного материала, внутри которого размещены фильтрующие элементы 4, и намагничивающую систему 5, расположенную снаружи корпуса. Фильтрующие элементы 4 выполнены из магнитомягкого материала в виде цилиндров с фасками на торцах, которые жестко закреплены на продольных траверсах 3 из немагнитного материала и разнесены в пространстве друг относительно друга, образуя трехмерную упорядоченную структуру. Продольные траверсы 3 закреплены на поперечных потоку жидкости траверсах 2 из немагнитного материала, образуя кассету 7, состоящую из двух вставляющихся с продольным сдвигом друг в друга матриц, каждая из которых представляет собой разнесенные в пространстве два кольца 1 из немагнитного материала с набором поперечных траверс. Технический результат: создание фильтра высокой производительности с низким гидравлическим сопротивлением, повышение рабочего ресурса фильтра. 4 ил.

Формула изобретения RU 2 403 950 C2

Электромагнитный фильтр, включающий цилиндрический корпус из немагнитного материала, внутри которого размещены фильтрующие элементы, и намагничивающую систему, расположенную снаружи корпуса, отличающийся тем, что фильтрующие элементы выполнены из магнитомягкого материала в виде цилиндров с фасками на торцах, которые жестко закреплены на продольных траверсах из немагнитного материала и разнесены в пространстве относительно друг друга, образуя трехмерную упорядоченную структуру, при этом продольные траверсы закреплены на поперечных потоку жидкости траверсах из немагнитного материала, образуя кассету, состоящую из двух вставляющихся с продольным сдвигом друг в друга матриц, каждая из которых представляет собой разнесенные в пространстве два кольца из немагнитного материала с набором поперечных траверс.

Документы, цитированные в отчете о поиске Патент 2010 года RU2403950C2

Аппарат для магнитодинамической обработки воды 1981
  • Воробьев Александр Николаевич
  • Голубев Илья Федорович
  • Андреичев Павел Петрович
  • Петров Александр Семенович
  • Авраамов Евгений Владимирович
  • Пороцкий Марк Борисович
  • Погонев Виктор Федорович
  • Юлис Александр Яковлевич
SU1000408A1
Электромагнитный аппарат 1979
  • Воробьев Александр Николаевич
  • Андреичев Павел Петрович
  • Воробьев Валерий Александрович
  • Поджарский Аврум Иосифович
  • Гвоздецкий Иван Иванович
  • Тюликов Ким Акундинович
  • Петров Александр Семенович
SU925394A1
Электромагнитный фильтр для очистки жидкости 1983
  • Прохач Эдуард Ефимович
  • Островский Евгений Тадеушевич
  • Петренко Александр Васильевич
  • Власко Иван Владимирович
  • Печенко Сергей Григорьевич
SU1100001A1
Аппарат для магнитной обработки жидкости 1985
  • Жуйко Петр Васильевич
  • Исупова Вера Владимировна
  • Аметов Игорь Мамедович
  • Аллахвердян Владимир Александрович
  • Богданов Олег Алексеевич
  • Филиппов Павел Гаврилович
  • Губарев Анатолий Григорьевич
  • Мингалимов Габдулхамит Ямалдинович
SU1296513A1
АППАРАТ ДЛЯ МАГНИТНОЙ ОБРАБОТКИ ВОД 1993
  • Брейво А.Э.
  • Жуков М.Л.
  • Козьмин Ю.П.
  • Коротов М.В.
  • Линьков Ф.С.
  • Комаров Г.Ф.
RU2053202C1
JP 56053714 A, 13.05.1981
JP 2005344927 A, 15.12.2005
УСТРОЙСТВО ДЛЯ ПРОГРАММИРОВАНИЯ МИКРОСХЕМ ПОСТОЯННОЙ ПАМЯТИ 1990
  • Сараев В.Г.
  • Лебедев В.И.
  • Матросов С.Г.
RU2047918C1

RU 2 403 950 C2

Авторы

Захаров Андрей Павлович

Сироткин Олег Леонидович

Шмелев Александр Евгеньевич

Белоконева Наталья Владимировна

Даты

2010-11-20Публикация

2009-01-26Подача