Изобретение относится к сельскому хозяйству, к растениеводству в условиях сооружений защищенного грунта, в частности к светокультуре.
Известен способ определения энергоемкости потока оптического излучения в растениеводстве, включающий выделение из общего потока излучения диапазона фотосинтетически активной радиации (ФАР); измерение энергии в отдельных спектральных диапазонах; вычисление процентных долей энергии в отдельных спектральных диапазонах в отношении к энергии ФАР, величины которых принимают за энергетическую характеристику потока [А.с. СССР №1620062, МКИ A01G 31/00. Способ выращивания огурца / Тихомиров А.А., Золотухин И.Г., Лисовский Г.М., Сидько Ф.Я., Прикупец Л.Б. - №4650599/13; заявл. 17.02.89; опубл. 15.01.91. - Бюл. №2].
Недостатком данного способа является характеристика воздействующего на растения потока множеством коэффициентов (процентным составом излучения), что не позволяет произвести оптимизацию процесса облучения по единому критерию. Кроме того, для оценки энергетической эффективности процесса облучения дополнительно требуется задание нормативного для данного вида растений спектрального состава излучения.
Наиболее близким к изобретению является способ определения энергоемкости потока оптического излучения в растениеводстве, включающий задание нормативных для данного вида растений значений процентных долей энергии в отдельных спектральных диапазонах ФАР; выделение из общего потока излучения диапазона ФАР; измерение энергии потока в отдельных спектральных диапазонах ФАР; вычисление процентных долей энергии в отдельных спектральных диапазонах в отношении к энергии ФАР; определение значения коэффициента отклонения спектрального состава потока излучения от нормативного, величину которого принимают за энергетическую характеристику потока [Пат. 2053644 РФ, МПК6 A01G 9/24, A01G 31/02. Способ искусственного облучения растений в процессе выращивания / Ракутько С.А.; заявитель и патентообладатель Ракутько С.А. - №93008935/15; заявл. 17.02.93; опубл. 10.02.96].
Недостатком известного способа является его направленность на оценку потока оптического излучения с биологической точки зрения, учитывающей продуктивность растения при облучении их потоком данного спектрального состава. Однако повышение соответствия спектрального состава источников света нормативному по критерию минимума коэффициента отклонения спектра не равнозначно снижению энергоемкости процесса облучения.
Техническим результатом изобретения является повышение информативности при измерении величины, характеризующей энергетическую эффективность процесса облучения.
Способ определения энергоемкости потока оптического излучения заключается в следующем.
1 - задают нормативные для данного вида растений значения процентных долей энергии в отдельных спектральных диапазонах ФАР;
2 - выделяют из общего потока излучения диапазон ФАР;
3 - измеряют энергию потока в отдельных спектральных диапазонах ФАР;
4 - вычисляют процентные доли энергии в отдельных спектральных диапазонах в отношении к энергии ФАР;
5 - определяют значение энергоемкости потока оптического излучения по формуле:
,
где и - соответственно нормативные и измеренные процентные доли энергии потока излучения в i-м спектральном диапазоне.
Новые существенные признаки:
5 - определяют значение энергоемкости потока оптического излучения по формуле:
,
где и - соответственно нормативные и измеренные процентные доли энергии потока излучения в i-м спектральном диапазоне.
Перечисленные новые существенные признаки в совокупности с известными позволяют получить технический результат во всех случаях, на которые распространяется испрашиваемый объем правовой охраны.
На фиг.1 показана схема к определению энергоемкости потока оптического излучения при облучении растений. Позициями обозначены: 1 - облучательная установка, 2 - поле оптического излучения, 3 - облучаемые растения. Символами обозначены: Q1 - энергия, генерируемая облучательной установкой, Q2 - энергия, полезно воспринимаемая растениями, ε - энергоемкость потока оптического излучения.
На фиг.2 показано отображение результатов измерения энергоемкости потока оптического излучения в треугольных координатах. Точка А соответствует нормативным значениям спектрального состава потока излучения, точка В - измеренным значениям по рассмотренному численному примеру.
В основе изобретения лежат следующие положения.
В соответствии с общепринятым определением под энергоемкостью понимают величину потребления энергии и(или) топлива на основные и вспомогательные технологические процессы изготовления продукции, выполнение работ, оказание услуг на базе заданной технологической системы [ГОСТ Р 51387-1999. Энергосбережение. Нормативно-методическое обеспечение. Основные положения. Введ. 2000-07-01].
Численным выражением энергоемкости системы является показатель, представляющий собой отношение энергии, потребляемой системой (энергии на входе), к величине, характеризующей результат функционирования данной системы (энергии на выходе). В применении к потоку оптического облучения энергия на входе представляет собой энергию, генерируемую облучательной установкой для создания определенных параметров радиационного режима растений. Под энергией на выходе следует понимать энергию, которая может быть полезно воспринята растениями с учетом их требований к спектральным параметрам потока излучения. Формула для вычисления энергоемкости, отн. ед.:
где Q1 - энергия, генерируемая облучательной установкой, Вт;
Q2 - энергия, полезно воспринимаемая растениями, Вт.
Для создаваемого облучательной установкой поля оптического излучения величина энергоемкости является показателем энергетической эффективности передачи энергии потока оптического излучения облучаемому объекту (растениям).
В настоящее время в соответствии с действующими в отрасли методиками спектральный состав излучения характеризуют соотношением интенсивности излучения трех спектральных диапазонов ki, %: синего kсин (400..500 нм), зеленого kзел (500..600 нм) и красного kкр (600..700 нм) диапазона ФАР (400…700 нм). Продуктивность облучаемых растений повышается при приближении создаваемых спектральных параметров потока к нормативным значениям . Для некоторых светокультур найдены спектральные соотношения, обеспечивающие наилучшие результаты. Например: для огурца - , для томата - [Прикупец Л.Б. Оптимизация спектра излучения при выращивании овощей в условиях интенсивной светокультуры / Л.Б.Прикупец, А.А.Тихомиров // Светотехника. - 1992. - No 3. - C.5-7].
В единицу времени передаваемая при облучении растениям энергия, Вт, определяется по формуле:
где Е - облученность, Вт/м2,
S - площадь облучаемой поверхности, м2.
При отсутствии данных о требуемом спектральном составе излучения для растений под облученностью Е понимают создаваемую интегральную облученность Е0 как поверхностную плотность энергии всего диапазона длин волн, генерируемых облучательной установкой.
При известных спектральных характеристиках потока нормируемыми величинами становятся облученности в отдельных спектральных диапазонах:
где ki - доля потока в i-м спектральном диапазоне, отн. ед.
Как правило, реальный спектральный состав излучения отличен от нормативного, т.е. значения не равны . Отклонение реального спектра от нормативного приводит к потерям, что увеличивает энергоемкость процесса облучения. Природа этих потерь связана с необходимостью обеспечить требуемую облученность в наиболее «дефицитном» спектральном диапазоне, завысив ее в других диапазонах на некоторую величину kз, отн. ед. (коэффициент завышения):
При этом происходит завышение и общей энергии, потребляемой от облучательной установки:
Тогда, из определения энергоемкости, следует:
Таким образом, численно энергоемкость равна величине коэффициента завышения, определяемого по формуле (4).
Способ осуществляют следующим образом.
По результатам предварительных экспериментов или по литературным источникам задают нормативные для данного вида растений значения процентных долей энергии в отдельных спектральных диапазонах ФАР; выделяют из общего потока излучения диапазон ФАР; измеряют энергию потока в отдельных спектральных диапазонах ФАР; вычисляют процентные доли энергии в отдельных спектральных диапазонах в отношении к энергии ФАР; определяют значение энергоемкости потока оптического излучения по формуле:
,
где и - соответственно нормативные и измеренные процентные доли энергии потока излучения в i-м спектральном диапазоне.
Пример. Производится облучение культуры огурца. Способ ведут в следующей последовательности.
Задают нормативные для данного вида растения значения процентных долей энергии в отдельных спектральных диапазонах. Для огурца это .
Выделяют из общего потока излучения диапазон ФАР. Измеряют энергию в отдельных спектральных диапазонах потока ФАР. Вычисляют процентные доли энергии в отдельных спектральных диапазонах в отношении к энергии ФАР. Пусть процентные доли равны .
Определяют значение энергоемкости потока оптического излучения:
Найденное значение является мерой энергетической эффективности процесса облучения культуры огурца.
Вычисляют значения энергоемкости для различных сочетаний , строят график в треугольных координатах, показанный на фиг.2, который используют для непосредственного определения значения энергоемкости потока по его спектральному составу.
Изобретение относится к области сельского хозяйства. В способе задают нормативные для данного вида растений значения процентных долей энергии в отдельных спектральных диапазонах фотосинтетически активной радиации (ФАР). Выделяют из общего потока излучения диапазон ФАР, измеряют энергию потока в отдельных спектральных диапазонах ФАР. Вычисляют процентные доли энергии в отдельных спектральных диапазонах в отношении к энергии ФАР. Значение энергоемкости потока оптического излучения определяют по формуле: , где и - соответственно нормативные и измеренные процентные доли энергии потока излучения в i-м спектральном диапазоне. Способ позволяет повысить информативность при измерении величины, характеризующей энергетическую эффективность процесса облучения. 2 ил.
Способ определения энергоемкости потока оптического излучения в растениеводстве, заключающийся в том, что задают нормативные для данного вида растений значения процентных долей энергии в отдельных спектральных диапазонах фотосинтетически активной радиации (ФАР); выделяют из общего потока излучения диапазон ФАР; измеряют энергию потока в отдельных спектральных диапазонах ФАР; вычисляют процентные доли энергии в отдельных спектральных диапазонах в отношении к энергии ФАР, отличающийся тем, что значение энергоемкости потока оптического излучения определяют по формуле ,
где и - соответственно нормативные и измеренные процентные доли энергии потока излучения в i-м спектральном диапазоне.
RU 2053644 C1, 10.12.1996 | |||
СПОСОБ ЭНЕРГОСБЕРЕГАЮЩЕЙ ОПТИМИЗАЦИИ ПРОИЗВОДСТВА КОРМА | 2006 |
|
RU2308184C1 |
РАКУТЬКО С.А | |||
Спектральные отклонения и энергоемкость процесса облучения растений | |||
Известия СПб гос | |||
аграрного ун-та | |||
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами | 1921 |
|
SU10A1 |
Авторы
Даты
2010-12-10—Публикация
2009-07-06—Подача