СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАСЕЛ Российский патент 2010 года по МПК G01N33/30 

Описание патента на изобретение RU2406087C1

Изобретение относится к технологии испытания смазочных масел и может быть использовано для оценки их температурной стойкости.

Известен способ определения температурной стойкости смазочного масла (патент РФ 2240558, МПК G01N 33/30, опубл. 2004) путем определения коэффициента поглощения светового потока, вязкости, коэффициента энергетического состояния, температуры начала нагарообразования и разности коэффициентов поглощения светового потока до и после центрифугирования.

Наиболее близким по технической сущности и достигаемому результату является метод определения температурной стойкости смазочных материалов (Вестник КрасГАУ, Вып.12, г.Красноярск, 2006 г. С.237), при котором отбирают пробу масла, каждую из которых нагревают при атмосферном давлении без доступа воздуха с конденсацией паров и отвода конденсата, при этом каждую последующую пробу масла испытывают при температуре на 10-20°C выше предыдущей (т.е. температуру испытания повышают на постоянную величину), после чего определяют коэффициент поглощения светового потока Кп, летучесть (величину испарившейся массы G как разность массы пробы масла до и после испытания), строят графические зависимости от температуры испытания.

Известные способы обладают низкой информативностью, т.к. не учитывают сопротивляемость испытуемого масла температурной деструкции.

Задачей изобретения является повышение информативности способа определения температурной стойкости смазочных материалов путем дополнительного учета коэффициента сопротивляемости температурной деструкции.

Поставленная задача решается тем, что в способе определения температурной стойкости смазочных масел, при котором отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отвода конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, величину испарившейся массы как разность массы пробы масла до и после испытания, согласно изобретению определяют коэффициент испарения как отношение испарившейся массы пробы масла к оставшейся массе и коэффициент сопротивляемости температурной деструкции Rд по формуле

,

где Кп - коэффициент поглощения светового потока; КG - коэффициент испарения;

затем строят графическую зависимость коэффициента сопротивляемости температурной деструкции Rд от температуры испытания, а температурную стойкость испытуемого смазочного масла определяют по величине коэффициента сопротивляемости температурной деструкции Rд.

На чертеже представлены зависимости коэффициента сопротивления температурной деструкции Rд от температуры испытания моторных масел: 1 - минеральное Spectral Super Universal 15W-40 SF/CC; 2 - частично синтетическое ТНК 10W-40 SL/CF; 3 - синтетическое Mobil Super 3000 5W-40 SJ/CF.

Пример конкретного выполнения способа.

Испытанию подвергались товарные масла: минеральное Spectrol Super Universal 15W-40 SF/CC, частично синтетическое ТНК 10W-40 SL/CF и синтетическое Mobil Super 3000 5W-40 SJ/CF.

Пробу масла делят на равные части, одну из которых массой, например, 80±0,1 г заливают в термостойкий стеклянный стакан и термостатируют на специально разработанном приборе в течение, например, 7 часов, при атмосферном давлении с конденсацией паров и отводом конденсата при температуре испытания, например 140°C. Температуру масла измеряют термопарой и поддерживают автоматически с помощью терморегулятора ТР-101 с точностью ±1°C.

После термостатирования пробу взвешивают, фотометрируют для определения коэффициента поглощения светового потока Кп, определяют величину испарившейся массы G как разность массы пробы масла до и после испытания и коэффициент испарения KG как отношение испарившейся массы пробы масла к оставшейся массе.

Так как дисперсная система масла не может неограниченно поглощать тепловую энергию, поэтому избыток ее обеспечивает превращение части смазочного материала в продукты окисления и испарения. Количество образующихся продуктов деструкции зависит от сопротивляемости испытуемого масла температурным воздействиям, поэтому, принимая за единицу сопротивляемость масла, определяем коэффициент сопротивляемости температурной деструкции по формуле:

где Кп и KG - коэффициенты, характеризующие соответственно поглощения светового потока и испарения.

KG=m/M,

где m - масса испарившегося масла, г; M - масса оставшейся пробы масла, г.

Остальные пробы испытуемого смазочного масла испытывают тем же способом при повышении температуры, например, на 20°C, выше предыдущей в диапазоне температур от 140 до 300°C и измеряют те же параметры, что при температуре 140°C. Результаты испытания сведены в таблицу.

Таблица Результаты испытания моторных масел на температурную стойкость Марка масла Температура испытания, °C Коэффициент поглощения светового потока, Кп Коэффициент испарения, КG Коэффициент сопротивления температурной деструкции, Rд Минеральное моторное масло Spectrol Super Universal 15W-40 SF/CC 140 0 0,01 1 160 0,05 0,02 0,99 180 0,09 0,025 0,98 200 0,11 0,073 0,96 220 0,14 0,144 0,93 240 0,52 0,253 0,83 260 0,86 0,548 0,67 Частично синтетическое моторное масло ТНК 10W-40 SL/CF 140 0,01 0,014 0,99 160 0,06 0,023 0,98 180 0,09 0,016 0,98 200 0,22 0,085 0,94 220 0,33 0,25 0,86 240 0,74 0,56 0,68 260 0,88 0,75 0,59 Синтетическое моторное масло Mobil Super 3000 5W-40 SJ/CF 140 0 0,012 1 160 0,03 0,012 0,99 180 0,07 0,025 0,98 200 0,11 0,063 0,96 220 0,19 0,101 0,93 240 0,7 0,256 0,82 260 0,97 0,412 0,71

По результатам испытания строят графические зависимости коэффициента сопротивляемости температурной деструкции Rд от температуры испытания.

Температурную стойкость испытуемого смазочного масла определяют по изменению коэффициента сопротивляемости температурной деструкции Rд. Чем больше коэффициент сопротивляемости температурной деструкции Rд, тем выше сопротивляемость и температурная стойкость испытуемого масла.

Для минерального масла Spectrol Super Universal 15W-40 SF/CC (кривая 1) и синтетического Mobil Super 3000 5W-40 SJ/CF (кривая 3) сопротивляемость деструкции одинакова до температуры 240°C, а от температуры 240 до 260°C сопротивляемость снижается, причем для минерального масла она снижается более интенсивно (кривая 1).

Для частично синтетического масла (кривая 2) высокое сопротивление деструкции наблюдается до температуры испытания 180°C, после которой оно снижается.

По данным графической зависимости Rд=f(t) (фиг.) видно, что более термостойким является масло (кривая 3) при температуре испытания 260°C.

Применение предлагаемого способа позволяет получить более полную информацию о температурной стойкости моторных масел, которую можно использовать для идентификации и представления группы эксплуатационных свойств.

Похожие патенты RU2406087C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАСЕЛ 2009
  • Ковальский Болеслав Иванович
  • Безбородов Юрий Николаевич
  • Петров Олег Николаевич
  • Юдин Алексей Владимирович
  • Ромащенко Алексей Сергеевич
RU2409814C1
СПОСОБ ОПРЕДЕЛЕНИЯ КАЧЕСТВА СМАЗОЧНЫХ МАСЕЛ 2013
  • Ковальский Болеслав Иванович
  • Малышева Наталья Николаевна
  • Кравцова Екатерина Геннадьевна
RU2528083C1
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЗЫВАЮЩЕЙ СПОСОБНОСТИ МАСЕЛ 2010
  • Ковальский Болеслав Иванович
  • Петров Олег Николаевич
  • Кузьменко Алёна Владимировна
  • Ромащенко Алексей Сергеевич
  • Берко Александр Валентинович
RU2419791C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАСЕЛ 2009
  • Ковальский Болеслав Иванович
  • Малышева Наталья Николаевна
  • Безбородов Юрий Николаевич
  • Петров Олег Николаевич
RU2415422C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2008
  • Ковальский Болеслав Иванович
  • Вишневская Елена Александровна
  • Безбородов Юрий Николаевич
  • Малышева Наталья Николаевна
RU2371706C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОТИВОИЗНОСНЫХ СВОЙСТВ МАСЕЛ 2011
  • Ковальский Болеслав Иванович
  • Юдин Алексей Владимирович
  • Рунда Михаил Михайлович
  • Берко Александр Валентинович
RU2454653C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАСЕЛ 2008
  • Ковальский Болеслав Иванович
  • Малышева Наталья Николаевна
RU2366945C1
СПОСОБ ОПРЕДЕЛЕНИЯ СООТНОШЕНИЯ МЕЖДУ ПРОДУКТАМИ ТЕМПЕРАТУРНОЙ ДЕСТРУКЦИИ И ИСПАРЕНИЯ СМАЗОЧНЫХ МАСЕЛ ПРИ ТЕРМОСТАТИРОВАНИИ 2020
  • Ковальский Болеслав Иванович
  • Сокольников Александр Николаевич
  • Петров Олег Николаевич
  • Шрамм Вячеслав Геннадьевич
RU2741242C1
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЗЫВАЮЩЕЙ СПОСОБНОСТИ МАСЕЛ 2014
  • Ковальский Болеслав Иванович
  • Петров Олег Николаевич
  • Шрам Вячеслав Геннадьевич
RU2567087C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ СМАЗОЧНОГО МАСЛА 2003
  • Ковальский Б.И.
  • Васильев С.И.
  • Ковальский С.Б.
RU2240558C1

Иллюстрации к изобретению RU 2 406 087 C1

Реферат патента 2010 года СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАСЕЛ

Изобретение относится к технологии испытания смазочных масел. Способ характеризуется тем, что отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отводом конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, величину испарившейся массы как разность массы пробы масла до и после испытания, при этом определяют коэффициент испарения как отношение испарившейся массы пробы масла к оставшейся массе и коэффициент сопротивляемости температурной деструкции из заданного соотношения, затем строят графическую зависимость коэффициента сопротивляемости температурной деструкции от температуры испытания, а температурную стойкость определяют по величине коэффициента сопротивляемости температурной деструкции в зависимости от температуры. Достигается повышение информативности определения. 1 табл., 1 ил.

Формула изобретения RU 2 406 087 C1

Способ определения температурной стойкости смазочных масел, при котором отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отводом конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, величину испарившейся массы как разность массы пробы масла до и после испытания, отличающийся тем, что определяют коэффициент испарения как отношение испарившейся массы пробы масла к оставшейся массе и коэффициент сопротивляемости температурной деструкции Rд по формуле

где Кп - коэффициент поглощения светового потока; КG - коэффициент испарения;
затем строят графическую зависимость коэффициента сопротивляемости температурной деструкции Rд от температуры испытания, а температурную стойкость определяют по величине коэффициента сопротивляемости температурной деструкции Rд в зависимости от температуры.

Документы, цитированные в отчете о поиске Патент 2010 года RU2406087C1

МАЛЫШЕВА Н.Н., КОВАЛЬСКИЙ Б.И
Вестник КрасГАУ
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ СМАЗОЧНОГО МАСЛА 2003
  • Ковальский Б.И.
  • Васильев С.И.
  • Ковальский С.Б.
RU2240558C1
0
SU160033A1
СПОСОБ ОЦЕНКИ ЭНЕРГИИ АКТИВАЦИИ ТЕРМОМЕХАНИЧЕСКОЙ ДЕСТРУКЦИИ СМАЗОЧНЫХ МАТЕРИАЛОВ ПРИ ТРЕНИИ 1997
  • Громаковский Д.Г.(Ru)
  • Беленьких Е.В.(Ru)
  • Ибатуллин И.Д.(Ru)
  • Карпов А.С.(Ru)
  • Ковшов А.Г.(Ru)
  • Сорокин А.Н.(Ru)
  • Кудюров Л.В.(Ru)
  • Торренс Эндрю
RU2119165C1
JP 9277789 A, 03.10.1997
US 4311036 A, 19.01.1982
JP 55124039 A, 24.09.1980.

RU 2 406 087 C1

Авторы

Ковальский Болеслав Иванович

Безбородов Юрий Николаевич

Малышева Наталья Николаевна

Ковальский Сергей Болеславович

Берко Александр Валентинович

Даты

2010-12-10Публикация

2009-06-08Подача