Изобретение относится к технологии испытания смазочных масел и может быть использовано для оценки их температурной стойкости.
Известен способ определения температурной стойкости смазочного масла (патент РФ 2240558, МПК G01N 33/30, опубл. 2004) путем определения коэффициента поглощения светового потока, вязкости, коэффициента энергетического состояния, температуры начала нагарообразования и разности коэффициентов поглощения светового потока до и после центрифугирования.
Наиболее близким по технической сущности и достигаемому результату является метод определения температурной стойкости смазочных материалов (Вестник КрасГАУ, Вып.12, г.Красноярск, 2006 г. С.237), при котором отбирают пробу масла, каждую из которых нагревают при атмосферном давлении без доступа воздуха с конденсацией паров и отвода конденсата, при этом каждую последующую пробу масла испытывают при температуре на 10-20°C выше предыдущей (т.е. температуру испытания повышают на постоянную величину), после чего определяют коэффициент поглощения светового потока Кп, летучесть (величину испарившейся массы G как разность массы пробы масла до и после испытания), строят графические зависимости от температуры испытания.
Известные способы обладают низкой информативностью, т.к. не учитывают сопротивляемость испытуемого масла температурной деструкции.
Задачей изобретения является повышение информативности способа определения температурной стойкости смазочных материалов путем дополнительного учета коэффициента сопротивляемости температурной деструкции.
Поставленная задача решается тем, что в способе определения температурной стойкости смазочных масел, при котором отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отвода конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, величину испарившейся массы как разность массы пробы масла до и после испытания, согласно изобретению определяют коэффициент испарения как отношение испарившейся массы пробы масла к оставшейся массе и коэффициент сопротивляемости температурной деструкции Rд по формуле
,
где Кп - коэффициент поглощения светового потока; КG - коэффициент испарения;
затем строят графическую зависимость коэффициента сопротивляемости температурной деструкции Rд от температуры испытания, а температурную стойкость испытуемого смазочного масла определяют по величине коэффициента сопротивляемости температурной деструкции Rд.
На чертеже представлены зависимости коэффициента сопротивления температурной деструкции Rд от температуры испытания моторных масел: 1 - минеральное Spectral Super Universal 15W-40 SF/CC; 2 - частично синтетическое ТНК 10W-40 SL/CF; 3 - синтетическое Mobil Super 3000 5W-40 SJ/CF.
Пример конкретного выполнения способа.
Испытанию подвергались товарные масла: минеральное Spectrol Super Universal 15W-40 SF/CC, частично синтетическое ТНК 10W-40 SL/CF и синтетическое Mobil Super 3000 5W-40 SJ/CF.
Пробу масла делят на равные части, одну из которых массой, например, 80±0,1 г заливают в термостойкий стеклянный стакан и термостатируют на специально разработанном приборе в течение, например, 7 часов, при атмосферном давлении с конденсацией паров и отводом конденсата при температуре испытания, например 140°C. Температуру масла измеряют термопарой и поддерживают автоматически с помощью терморегулятора ТР-101 с точностью ±1°C.
После термостатирования пробу взвешивают, фотометрируют для определения коэффициента поглощения светового потока Кп, определяют величину испарившейся массы G как разность массы пробы масла до и после испытания и коэффициент испарения KG как отношение испарившейся массы пробы масла к оставшейся массе.
Так как дисперсная система масла не может неограниченно поглощать тепловую энергию, поэтому избыток ее обеспечивает превращение части смазочного материала в продукты окисления и испарения. Количество образующихся продуктов деструкции зависит от сопротивляемости испытуемого масла температурным воздействиям, поэтому, принимая за единицу сопротивляемость масла, определяем коэффициент сопротивляемости температурной деструкции по формуле:
где Кп и KG - коэффициенты, характеризующие соответственно поглощения светового потока и испарения.
KG=m/M,
где m - масса испарившегося масла, г; M - масса оставшейся пробы масла, г.
Остальные пробы испытуемого смазочного масла испытывают тем же способом при повышении температуры, например, на 20°C, выше предыдущей в диапазоне температур от 140 до 300°C и измеряют те же параметры, что при температуре 140°C. Результаты испытания сведены в таблицу.
По результатам испытания строят графические зависимости коэффициента сопротивляемости температурной деструкции Rд от температуры испытания.
Температурную стойкость испытуемого смазочного масла определяют по изменению коэффициента сопротивляемости температурной деструкции Rд. Чем больше коэффициент сопротивляемости температурной деструкции Rд, тем выше сопротивляемость и температурная стойкость испытуемого масла.
Для минерального масла Spectrol Super Universal 15W-40 SF/CC (кривая 1) и синтетического Mobil Super 3000 5W-40 SJ/CF (кривая 3) сопротивляемость деструкции одинакова до температуры 240°C, а от температуры 240 до 260°C сопротивляемость снижается, причем для минерального масла она снижается более интенсивно (кривая 1).
Для частично синтетического масла (кривая 2) высокое сопротивление деструкции наблюдается до температуры испытания 180°C, после которой оно снижается.
По данным графической зависимости Rд=f(t) (фиг.) видно, что более термостойким является масло (кривая 3) при температуре испытания 260°C.
Применение предлагаемого способа позволяет получить более полную информацию о температурной стойкости моторных масел, которую можно использовать для идентификации и представления группы эксплуатационных свойств.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАСЕЛ | 2009 |
|
RU2409814C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КАЧЕСТВА СМАЗОЧНЫХ МАСЕЛ | 2013 |
|
RU2528083C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЗЫВАЮЩЕЙ СПОСОБНОСТИ МАСЕЛ | 2010 |
|
RU2419791C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАСЕЛ | 2009 |
|
RU2415422C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2008 |
|
RU2371706C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОТИВОИЗНОСНЫХ СВОЙСТВ МАСЕЛ | 2011 |
|
RU2454653C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАСЕЛ | 2008 |
|
RU2366945C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СООТНОШЕНИЯ МЕЖДУ ПРОДУКТАМИ ТЕМПЕРАТУРНОЙ ДЕСТРУКЦИИ И ИСПАРЕНИЯ СМАЗОЧНЫХ МАСЕЛ ПРИ ТЕРМОСТАТИРОВАНИИ | 2020 |
|
RU2741242C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЗЫВАЮЩЕЙ СПОСОБНОСТИ МАСЕЛ | 2014 |
|
RU2567087C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ СМАЗОЧНОГО МАСЛА | 2003 |
|
RU2240558C1 |
Изобретение относится к технологии испытания смазочных масел. Способ характеризуется тем, что отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отводом конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, величину испарившейся массы как разность массы пробы масла до и после испытания, при этом определяют коэффициент испарения как отношение испарившейся массы пробы масла к оставшейся массе и коэффициент сопротивляемости температурной деструкции из заданного соотношения, затем строят графическую зависимость коэффициента сопротивляемости температурной деструкции от температуры испытания, а температурную стойкость определяют по величине коэффициента сопротивляемости температурной деструкции в зависимости от температуры. Достигается повышение информативности определения. 1 табл., 1 ил.
Способ определения температурной стойкости смазочных масел, при котором отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отводом конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, величину испарившейся массы как разность массы пробы масла до и после испытания, отличающийся тем, что определяют коэффициент испарения как отношение испарившейся массы пробы масла к оставшейся массе и коэффициент сопротивляемости температурной деструкции Rд по формуле
где Кп - коэффициент поглощения светового потока; КG - коэффициент испарения;
затем строят графическую зависимость коэффициента сопротивляемости температурной деструкции Rд от температуры испытания, а температурную стойкость определяют по величине коэффициента сопротивляемости температурной деструкции Rд в зависимости от температуры.
МАЛЫШЕВА Н.Н., КОВАЛЬСКИЙ Б.И | |||
Вестник КрасГАУ | |||
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ СМАЗОЧНОГО МАСЛА | 2003 |
|
RU2240558C1 |
0 |
|
SU160033A1 | |
СПОСОБ ОЦЕНКИ ЭНЕРГИИ АКТИВАЦИИ ТЕРМОМЕХАНИЧЕСКОЙ ДЕСТРУКЦИИ СМАЗОЧНЫХ МАТЕРИАЛОВ ПРИ ТРЕНИИ | 1997 |
|
RU2119165C1 |
JP 9277789 A, 03.10.1997 | |||
US 4311036 A, 19.01.1982 | |||
JP 55124039 A, 24.09.1980. |
Авторы
Даты
2010-12-10—Публикация
2009-06-08—Подача