СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОТУРБИННОЙ УСТАНОВКИ Российский патент 2010 года по МПК G01M15/14 

Описание патента на изобретение RU2406990C1

Изобретение относится к области эксплуатации газотурбинных установок, в частности оценке технического состояния газотурбинного двигателя и осуществлению контроля степени загрязнения газовоздушного тракта двигателя.

Основной эксплуатационной причиной снижения мощности газотурбинной установки является загрязнение газовоздушного тракта. Эффективность эксплуатации газотурбинных установок в подобных случаях зависит от своевременной диагностики ухудшения параметров и выполнения очистки газовоздушного тракта для восстановления мощности.

Известен способ эксплуатации энергетической газотурбинной установки (ГТУ), предусматривающий очистку газовоздушного тракта на основе данных о снижении вырабатываемой электрической мощности (ΔN) по сравнению с техническим состоянием ГТУ перед началом эксплуатации [Цанев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций. М.: Издательство МЭИ, 2002 г., стр.178-179].

Измерение параметра N производят для одинаковых условий на входе в ГТУ при номинальном уровне нагрузки, скорректированной температуре газов на выходе ГТУ и полностью открытом положении входного направляющего аппарата компрессора. После проведения очистки проточной части ГТУ производят повторное измерение электрической мощности для подтверждения восстановления характеристик.

Недостатком известного способа является невозможность использования диагностического признака - снижения электрической мощности ΔN при оценке степени загрязнения ГТУ для механического привода.

Известен также способ оценки технического состояния газоперекачивающих агрегатов с газотурбинным приводом на основе многофакторного диагностирования параметров их проточной части с использованием комплекса нелинейных математических моделей ГТУ и центробежного нагнетателя, которые согласовывают между собой через параметры механической мощности и частоты вращения силового вала [Патент РФ №2217722, G01M 5/00, 2003 г.]. О неисправностях в работе судят по изменениям во времени параметров состояния ГТУ и интегральным показателям работы газоперекачивающего агрегата.

Недостатками данного аналога и подобного способа, реализованного в системе диагностирования газоперекачивающих агрегатов [Патент РФ №2245533, G01M 15/00, F04D 27/02, 2005 г.] и предусматривающего параметрическую, вибрационную, визуально-оптическую, ресурсную и экспертную диагностику с последующим проведением ремонтно-восстановительных работ, являются существенный объем регистрируемой параметрической информации, сложность диагностической аппаратуры, необходимость в высокой квалификации обслуживающего персонала, что неизбежно приводит к повышенным эксплуатационным расходам.

Наиболее близким к заявляемому способу является способ эксплуатации турбореактивного двигателя по его техническому состоянию, предусматривающий периодический вывод двигателя на частоту вращения ротора низкого давления nРНД, близкую к полученной в начале эксплуатации для максимального режима, далее создают на турбине перепад давления, близкий к перепаду давления в начале эксплуатации на этой частоте вращения nрнд, измеряют частоту вращения ротора высокого давления nрвд (газогенератора), сравнивают ее величину со значением, полученным в начале эксплуатации, и при увеличении nрвд более чем на 1,5% осуществляют промывку газового тракта двигателя до уменьшения этого отклонения на 1,5…2% [Патент РФ №2168163, G01M 15/00, 2001 г.].

Основным недостатком прототипа является необходимость в специальном выводе двигателя на максимальный режим, что приводит к дополнительным эксплуатационным расходам, связанным с ускоренной выработкой ресурса горячей части двигателя и тратам топлива на периодические проверки. Кроме того, параметр частоты вращения ротора газогенератора (nгг) как диагностический признак не в полной мере учитывает изменение расходной характеристики компрессора из-за загрязнения газовоздушного тракта. Поэтому известный способ не обеспечивает высокую достоверность определения необходимости промывки газовоздушного тракта.

Техническая задача - исключение эксплуатационных затрат, связанных с необходимостью проведения специальных действий по оценке состояния газовоздушного тракта, и повышение достоверности определения необходимости его промывки за счет повышения точности и частоты контроля степени загрязнения в процессе эксплуатации установки.

Указанная задача решена за счет того, что в способе эксплуатации газотурбинной установки по техническому состоянию газотурбинного двигателя (ГТД) путем периодического определения отклонений параметров ГТД, в частности величины частоты вращения ротора газогенератора nгг, измеренной в процессе эксплуатации установки, от исходных значений параметров, в частности nгг исх, определенной в процессе заводских сдаточных испытаний перед началом эксплуатации на контролируемом режиме работы, и выполнения очистки газовоздушного тракта газотурбинной установки при изменении отклонений параметров сверх заранее установленных величин, согласно изобретению предварительно на этапе проектирования ГТУ формируют эксплуатационную математическую модель работы ГТУ, включающую первую функциональную зависимость в виде

Рк реж=f(Р*к, Рн, К1, Крк, Δnгг),

где Рк реж - величина Р*к, приведенная к принятым атмосферным условиям при определении исходных значений параметров и контрольному режиму с учетом программ управления ГТД установки, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД;

Р*к - абсолютное давление воздуха за компрессором;

Рн - атмосферное давление;

K1 - коэффициент приведения Р*к;

Крк - коэффициент приведения Р*к к контролируемому режиму;

Δnгг - отклонение величины nгг от исходного значения, вычисленное по формуле: Δnгг = nгг реж - nгг исх,

где nгг реж - величина nгг, приведенная к принятым атмосферным условиям при определении исходных значений параметров, с учетом программ управления ГТД, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД,

nгг реж =f(nгг, К2),

где К2 - коэффициент приведения nгг;

nгг исх - исходное значение nгг на контролируемом режиме при принятых атмосферных условиях;

и вторую функциональную зависимость в виде

tт реж=f(t*т, К3, Ктт, Δnгг),

где tт реж - величина t*т, приведенная к принятым атмосферным условиям при определении исходных значений параметров и контрольному режиму с учетом программ управления ГТД, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД;

t*т - температура газов за турбиной газогенератора;

К3 - коэффициент приведения t*т;

Ктт - коэффициент приведения t*т к контролируемому режиму.

В процессе заводских сдаточных испытаний перед началом эксплуатации дополнительно на контрольном режиме измеряют температуру газов за турбиной газогенератора t*т, абсолютное давление воздуха за компрессором Р*к, атмосферное давление Рн, и определяют исходные значения tт исх, Рк исх на контролируемом режиме при принятых атмосферных условиях.

Коэффициенты К1, K2, К3 представляют собой коэффициенты приведения параметров Р*к, nгг, t*т соответственно к принятым атмосферным условиям при определении исходных значений параметров с учетом программ управления ГТД, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД.

Величины параметров nгг исх, tт исх и Рк исх заносят в формуляр указанного ГТД.

Далее в процессе эксплуатации ежедневно на эксплуатационном режиме работы газотурбинной установки осуществляют измерение текущих значений параметров nггтек, t*ттек, Р*ктек, t*вхтек, Рнтек на основе первой и второй функциональных зависимостей, с учетом величины Δnгг, вычисляют Рк режтек и tт режтек, и также ежедневно осуществляют сравнение этих параметров с Рк исх и tт исх, с получением величин ΔРкк режк исх и Δtт=tт реж-tт исх, которые в свою очередь сравнивают с заранее заданными величинами Δ1 и Δ2. При этом в случае, если ΔРк≥Δ1 и Δtт≤Δ2 продолжают эксплуатацию указанной ГТУ без ограничений, а если ΔРк1 или Δtт2, то проводят визуально-оптический контроль компрессора на предмет наличия повреждений и при отсутствии последних выполняют промывку газовоздушного тракта ГТУ.

В отличие от прототипа мониторинг параметров ГТУ осуществляют в процессе штатной эксплуатации, т.е. без специальных остановов и/или выходов на заранее заданный контрольно-проверочный режим, т.е. без осуществления специальных действий, что приводит к существенному снижению затрат.

Применение в качестве диагностических признаков загрязнения газовоздушного тракта параметров Р*к и t*т как наиболее точно отражающих ухудшение характеристик компрессора позволяет повысить точность контроля степени загрязнения в процессе эксплуатации по заявляемому способу.

Ежедневная периодичность контроля в максимальной степени способствует достоверности в определении необходимости очистки газовоздушного тракта и исключает запоздалую или преждевременную очистку.

Способ осуществляют следующим образом.

1. Предварительно на этапе проектирования ГТУ формируют эксплуатационную математическую модель работы ГТУ, включающую первую функциональную зависимость в виде:

Рк реж=f(Р*к, Рн, К1, Крк, Δnгг),

и вторую функциональную зависимость в виде:

tт реж=f(t*т, К3, Ктт, Δnгг).

2. В процессе заводских сдаточных испытаний ГТУ, т.е. перед началом эксплуатации, на контрольных режимах работы ГТУ наряду с другими параметрами, в частности nгг, измеряют температуру газов за турбиной газогенератора t*т, абсолютное давление воздуха за компрессором Р*к, температуру воздуха на входе в ГТД t*вх и атмосферное давление Рн, затем определяют исходные значения nгг исх, tт исх, Рк исх на контролируемом режиме при принятых атмосферных условиях. Величины параметров nгг исх, tт исх, Рк исх заносят в формуляр указанного ГТД.

3. Далее в процессе эксплуатации ежедневно с помощью штатной системы автоматического управления на эксплуатационном режиме работы указанного двигателя осуществляют измерение текущих значений параметров nггтек, t*ттек, Р*ктек, t*вхтек, Рнтек на основе первой и второй функциональных зависимостей с учетом величины Δnгг и вычисляют Рк режтек и tт режтек.

4. Ежедневно осуществляют сравнение величин Рк режтек и tт режтек с Рк исх и tт исх соответственно с получением величин ΔРк и Δtт. Осуществляют сравнение указанных величин с заранее заданными величинами Δ1 и Δ2. Величины Δ1 и Δ2 выбраны из условия обеспечения требуемого уровня мощности ГГУ не ниже заданного предела по нормативной или эксплуатационно-технической документации.

5. В случае, если ΔРк≥Δ1 и Δtт≤Δ2 продолжают эксплуатацию указанной ГТУ без ограничений, а если ΔРк1 или Δtт2, то проводят визуально-оптический контроль компрессора на предмет наличия повреждений (например, лопаток компрессора), которые могут стать причиной ухудшения параметров ГТУ и снижения ее мощности.

6. При отсутствии дефектов по результатам осмотра выполняют очистку газовоздушного тракта ГТУ любым известным способом.

После очистки производят повторное определение величин ΔРк и Δtт и при выполнении условий ΔРк≥Δ1 и Δtт≤Δ2 продолжают эксплуатацию указанного двигателя ГТУ.

Заявляемое техническое решение реализовано и опробовано эксплуатационными испытаниями в составе газотурбинной установки мощностью 16 МВт типа ГТУ-16П разработки ОАО «Авиадвигатель» (Россия), используемой в качестве привода нагнетателя природного газа магистральных газопроводов. Результаты испытаний и последующая эксплуатация в составе газоперекачивающих агрегатов в системе ОАО «Газпром» полностью подтвердили эффективность изобретения и своевременную диагностику ухудшения параметров ГТУ из-за загрязнения газовоздушного тракта.

Похожие патенты RU2406990C1

название год авторы номер документа
СПОСОБ ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ 2013
  • Цыганков Станислав Евгеньевич
  • Касьяненко Андрей Александрович
  • Евдокимов Андрей Николаевич
  • Кравченко Игорь Владимирович
RU2536759C1
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ПОМПАЖА 2020
  • Гордеев Олег Валентинович
  • Лисовин Игорь Георгиевич
  • Нелюбин Александр Геннадьевич
  • Полулях Антон Иванович
  • Ситников Александр Сергеевич
RU2747542C1
Способ диагностики технического состояния двухконтурного газотурбинного двигателя при эксплуатации 2017
  • Балабан Юрий Николаевич
  • Куприк Виктор Викторович
  • Хотеенков Иван Александрович
RU2640972C1
СПОСОБ И СИСТЕМА УПРАВЛЕНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2009
  • Черноморский Вадим Семенович
RU2418183C1
Способ определения мощности газотурбинного двигателя газоперекачивающего агрегата 1983
  • Коровин А.С.
  • Пак В.Д.
  • Вихляев И.А.
SU1114142A1
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ С ТРЕХКАСКАДНЫМ ГАЗОГЕНЕРАТОРОМ ОТ ПОМПАЖА С ПОСЛЕДУЮЩИМ РАЗРУШЕНИЕМ ГАЗОВОЗДУШНОГО ТРАКТА 2020
  • Ленюский Александр Иванович
  • Бойко Алексей Иванович
  • Черничкин Иван Александрович
  • Бегинин Сергей Владимирович
RU2747113C1
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ПОМПАЖА КОМПРЕССОРА 2023
  • Саженков Алексей Николаевич
  • Савенков Юрий Семенович
  • Якушев Алексей Павлович
RU2801768C1
СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОТУРБИННОЙ УСТАНОВКИ 2022
  • Константинов Алексей Евгеньевич
  • Куприк Виктор Викторович
  • Макарычев Антон Сергеевич
  • Марчуков Евгений Ювенальевич
  • Романенков Павел Георгиевич
  • Шарипов Шамиль Гусманович
RU2786870C1
СПОСОБ ДИАГНОСТИКИ НЕУСТОЙЧИВОЙ РАБОТЫ КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ НА ЗАПУСКЕ 2006
  • Ипполитов Валерий Георгиевич
  • Полулях Антон Иванович
  • Савенков Юрий Семенович
  • Саженков Алексей Николаевич
  • Трубников Юрий Абрамович
RU2316678C1
СПОСОБ КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ И ОБСЛУЖИВАНИЯ ДВУХРОТОРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПРИ ЕГО ЭКСПЛУАТАЦИИ 2011
  • Куприк Виктор Викторович
  • Марчуков Евгений Ювенальевич
  • Орлов Олег Иванович
RU2476849C1

Реферат патента 2010 года СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОТУРБИННОЙ УСТАНОВКИ

Изобретение относится к области эксплуатации газотурбинных установок, в частности оценке технического состояния газотурбинного двигателя и осуществлению контроля степени загрязнения газовоздушного тракта двигателя. Технический результат - повышение достоверности определения необходимости промывки двигателя за счет повышения точности и частоты контроля степени загрязнения в процессе эксплуатации установки. Указанный технический результат достигается тем, что предварительно на этапе проектирования ГТУ формируют эксплуатационную математическую модель работы ГТУ, в процессе заводских сдаточных испытаний перед началом эксплуатации дополнительно измеряют температуру газов за турбиной газогенератора t*т, абсолютное давление воздуха за компрессором Р*к, атмосферное давление Рн, и определяют исходные значения tт исх, Рк исх на контролируемом режиме при принятых атмосферных условиях, далее в процессе эксплуатации, ежедневно, на эксплуатационном режиме работы газотурбинной установки осуществляют измерение текущих значений параметров nггтек, t*ттек, Р*ктек, t*вхтек, Рнтек на основе первой и второй функциональных зависимостей, с учетом величины Δnгг, вычисляют Рк режтек и tт режтек, и также ежедневно осуществляют сравнение этих параметров с Рк исх и tт исх, с получением величин ΔРкк режк исх и Δtт=tт реж-tт исх, которые в свою очередь сравнивают с заранее заданными величинами Δ1 и Δ2, при этом в случае, если ΔРк≥Δ1 и Δtт≤Δ2, продолжают эксплуатацию указанной ГТУ без ограничений, а если ΔРк1 или Δtт2, то проводят визуально-оптический контроль компрессора на предмет наличия повреждений и при отсутствии последних выполняют промывку газовоздушного тракта ГТУ.

Формула изобретения RU 2 406 990 C1

Способ эксплуатации газотурбинной установки по техническому состоянию газотурбинного двигателя (ГТД) путем периодического определения отклонений параметров ГТД, в частности, величины частоты вращения ротора газогенератора nгг, измеренной в процессе эксплуатации установки, от исходных значений параметров, в частности nгг исх, определенной в процессе заводских сдаточных испытаний перед началом эксплуатации на контролируемом режиме работы, и выполнения очистки газовоздушного тракта газотурбинной установки при изменении отклонений параметров сверх заранее установленных величин, отличающийся тем, что
предварительно на этапе проектирования ГТУ формируют эксплуатационную математическую модель работы ГТУ, включающую первую функциональную зависимость в виде
Рк реж=f(Р*к, Рн, K1, Крк, Δnгг),
где Pк реж - величина Р*к, приведенная к принятым атмосферным условиям при определении исходных значений параметров, и контрольному режиму с учетом программ управления ГТД установки, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД;
Р*к - абсолютное давление воздуха за компрессором;
Рн - атмосферное давление;
К1 - коэффициент приведения Р*к;
Крк - коэффициент приведения Р*к к контролируемому режиму;
Δnгг - отклонение величины nгг от исходного значения, вычисленное по формуле Δnгг=nгг реж-nгг исх,
где nгг реж - величина nгг, приведенная к принятым атмосферным условиям при определении исходных значений параметров, с учетом программ управления ГТД, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД,
nгг реж=f(nгг, К2),
где K2 - коэффициент приведения nгг;
nгг исх - исходное значение nгг на контролируемом режиме при принятых атмосферных условиях;
и вторую функциональную зависимость в виде
tт реж=f(t*t, К3, Ктт, Δnгг),
где tт реж - величина t*т, приведенная к принятым атмосферным условиям при определении исходных значений параметров, и контрольному режиму с учетом программ управления ГТД, предназначенным для обеспечения заданных эксплуатационных характеристик ГТД;
t*т - температура газов за турбиной газогенератора;
К3 - коэффициент приведения t*т;
Kтт - коэффициент приведения t*т к контролируемому режиму;
при этом в процессе заводских сдаточных испытаний перед началом эксплуатации дополнительно измеряют температуру газов за турбиной газогенератора t*т, абсолютное давление воздуха за компрессором Р*к, атмосферное давление Рн, и определяют исходные значения tт исх, Рк исх на контролируемом режиме при принятых атмосферных условиях,
далее в процессе эксплуатации ежедневно на эксплуатационном режиме работы газотурбинной установки осуществляют измерение текущих значений параметров nггтек, t*ттек, Р*ктек, t*вхтек, Рнтек на основе первой и второй функциональных зависимостей, с учетом величины Δnгг, вычисляют Рк режтек и tт режтек, и также ежедневно осуществляют сравнение этих параметров с Рк исх и tт исх, с получением величин ΔРкк реж - Рк исх и Δtт-=tт реж - tт исх, которые в свою очередь сравнивают с заранее заданными величинами Δ1 и Δ2, при этом в случае, если ΔРк≥Δ1 и Δtт≤Δ2 продолжают эксплуатацию указанной ГТУ без ограничений, а если ΔРк1 или Δtт2, то проводят визуально-оптический контроль компрессора на предмет наличия повреждений и при отсутствии последних выполняют промывку газовоздушного тракта ГТУ.

Документы, цитированные в отчете о поиске Патент 2010 года RU2406990C1

СПОСОБ ЭКСПЛУАТАЦИИ ДВУХКОНТУРНОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ 1999
  • Андреев А.В.
  • Куприк В.В.
  • Рогожин В.И.
  • Цыбулько В.А.
  • Чепкин В.М.
  • Марчуков Е.Ю.
RU2168163C1
СИСТЕМА ДИАГНОСТИРОВАНИЯ ГАЗОПЕРЕКАЧИВАЮЩИХ АГРЕГАТОВ 2004
  • Фрейман В.Б.
  • Фрейман К.В.
  • Сапелкин В.С.
RU2245533C1
СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОПЕРЕКАЧИВАЮЩИХ АГРЕГАТОВ С ГАЗОТУРБИННЫМ ПРИВОДОМ В ПРОЦЕССЕ ИХ РАБОТЫ НА ОСНОВЕ МНОГОФАКТОРНОГО ДИАГНОСТИРОВАНИЯ ПАРАМЕТРОВ ИХ ПРОТОЧНОЙ ЧАСТИ 2002
  • Зарицкий С.П.
  • Кореневский Л.Г.
  • Поярков В.В.
  • Фрейман В.Б.
  • Фрейман К.В.
RU2217722C1
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВИАЦИОННЫХ ГТД 1996
  • Виноградов Ю.В.
  • Виноградов В.Ю.
RU2118810C1
US 7020595 B1, 28.03.2006
ЕР 1619489 В1, 19.03.2008.

RU 2 406 990 C1

Авторы

Иноземцев Александр Александрович

Полатиди Софокл Харлампович

Халиуллин Виталий Фердинандович

Воронков Виктор Евгеньевич

Саженков Алексей Николаевич

Даты

2010-12-20Публикация

2009-03-26Подача