УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ Российский патент 2011 года по МПК G01L9/00 

Описание патента на изобретение RU2408856C9

Предлагаемое изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления.

Известно устройство для измерения давления, содержащее коаксиальный резонатор, на торце которого расположены два плоских диска, выполняющие функцию конденсатора. Один из этих дисков прикреплен с помощью штока к центру мембраны, воспринимающей измеряемое давление, а другой диск закреплен на торце внутреннего проводника коаксиальной линии параллельно первому диску (RU 2221228 C2, 10.01.2004).

Известно также устройство (US 4604898 A, 12.08.1986), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Устройство-прототип содержит датчик в виде отрезка коаксиальной длинной линии с торцевым чувствительным элементом. Он представляет собой конденсатор, образованный совокупностью плоской металлической пластины, подсоединенной к внутреннему проводнику коаксиальной линии и установленной перпендикулярно ее продольной оси, и параллельной пластине деформируемой торцевой стенки (мембраны), воспринимающей внешнее давление. Резонансная частота колебаний, возбуждаемых в устройстве, зависит от величины прогиба деформируемой торцевой стенки резонатора.

Недостатком устройства-прототипа является ограниченная область применения, обусловленная предельной величиной прогиба деформируемой торцевой стенки резонатора. Если давление превышает предельное значение, связанное с максимальным прогибом стенки, то устройство становится неработоспособным.

Целью изобретения является расширение границ области применения датчика давления и повышения его чувствительности.

Технический результат достигается тем, что предлагаемое устройство для измерения давления содержит датчик в виде отрезка коаксиальной длинной линии с одним торцевым конденсатором, образованным совокупностью металлической деформируемой торцевой стенки и плоской металлической пластины, присоединенной к внутреннему проводнику коаксиальной линии и установленной перпендикулярно ее продольной оси и параллельно упомянутой металлической деформируемой торцевой стенке, воспринимающей внешнее давление, и электронный блок для возбуждения электромагнитных колебаний в отрезке длинной линии и измерения его резонансной частоты, при этом отрезок длинной линии выполнен П-образным, содержащим подсоединенный к его второму торцу конденсатор, идентичный первому конденсатору, причем плоская металлическая пластина второго конденсатора установлена параллельно указанной металлической деформируемой торцевой стенке.

Предлагаемое устройство поясняется чертежом, изображающим схему устройства.

На нем показаны: 1 - отрезок длинной линии, 2 - внутренний проводник, 3 - наружный проводник, 4 и 5 - металлическая пластина, 6 и 7 - торцевые стенки, 8 и 9 - элементы связи, 10 - электронный блок, 11 и 12 - линии связи.

В данном устройстве отрезок длинной линии 1 образован совокупностью его внутреннего 2 и наружного 3 проводников. К концам внутреннего проводника 2 прикреплены плоские металлические пластины 4 и 5, установленные перпендикулярно продольной оси коаксиальной линии и параллельно металлическим деформируемым торцевым стенкам 6 и 7. Отрезок коаксиальной линии выполнен в форме буквы «П», что позволяет обе пластины 4 и 5 расположить параллельно в одном и том же сечении и на одинаковом расстоянии от соответствующих им упругих торцевых стенок 6 и 7. Совокупности пластины 4 и торцевой стенки 6, а также пластины 5 и торцевой стенки 7 образуют электрические емкости (конденсаторы), являющиеся оконечными реактивными нагрузками отрезка длинной линии 1. С помощью элементов связи 8 и 9 отрезок длинной линии 1 соединен с электронным блоком 10, служащим для возбуждения электромагнитных колебаний в отрезке длинной линии 1 и измерения его резонансной частоты (информативного параметра). Элементы связи могут быть, в частности, выполнены, как показано на чертеже, в виде петель связи (магнитных элементов связи).

Устройство работает следующим образом. В зависимости от величины внешнего измеряемого давления (показано на чертеже стрелками) изменяется величина прогиба каждой деформируемой торцевой стенки 6 и 7. При этом изменяется расстояние между стенками и соответствующими им пластинами 4 и 5 и, как следствие, величины электрических емкостей - реактивных (емкостных) нагрузок отрезка коаксиальной длинной линии.

Покажем, что при подключении к обоим торцам отрезка длинной линии 1 нагрузочных сопротивлений в виде сосредоточенных емкостей Сн, являющихся чувствительными элементами, имеет место увеличение чувствительности по сравнению с отрезком длинной линии, имеющим чувствительный элемент лишь на одном конце.

Подключение на конце отрезка длинной линии электрической емкости Сн эквивалентно удлинению разомкнутого на этом конце отрезка длинной линии на величину lC, равную (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1989. С.18-19)

где f - частота, c - скорость света (3·108 м/с), W0 - волновое сопротивление длинной линии. Поэтому резонансная (собственная) частота fp электромагнитных колебаний отрезка длинной линии, на каждом из двух концов которого подключена емкость Сн, равна

где l - длина отрезка длинной линии.

Если одна из емкостей Сн является чувствительным элементом, а другая имеет фиксированную величину Сн0, не зависящую от измеряемого параметра, то такой отрезок длинной линии сходен с отрезком длинной линии в устройстве-прототипе, где "рабочим" является только один конец соответствующего отрезка длинной линии. В этом случае для отрезка длинной линии с подключенными к его концам емкостями Сн и Сн0 резонансная частота рассчитывается так:

где x - измеряемый параметр, которым является прогиб торцевого упругого элемента (мембраны), влияющий на величину электрической емкости Сн(х).

При наличии двух "рабочих" торцевых емкостей Сн на концах отрезка длинной линии значение резонансной частоты будет равным

При n=1 в формулах (2), (3) и (4) отрезок длинной линии является полуволновым. При этом на его концах наблюдается максимум амплитуды электрического поля и минимум амплитуды магнитного поля, а в центральной части отрезка длинной линии наоборот - минимум амплитуды электрического поля и максимум амплитуды магнитного поля. Именно для связи по магнитному полю элементы 8 и 9 имеют форму петель.

Преобразовав выражения (3) и (4), можно получить формулы для расчета значений S0 и S чувствительности устройств с одним или двумя "рабочими" концами отрезка длинной линии:

Сравнивая (5) и (6), с учетом того, что начальное значение резонансной частоты для обоих устройств (с одним и двумя "рабочими" концами отрезка длинной линии) при некотором номинальном значении x0 измеряемого параметра одно и то же (fp1(x0)=fp2(x0)), получим S=2S0. Подобное соотношение имеет место в реальном диапазоне изменения х при деформации мембран датчика устройства. Следовательно, чувствительность предлагаемого устройства к измеряемому давлению в два раза выше чувствительности устройства с одним "рабочим" концом отрезка длинной линии, соответствующего устройству-прототипу.

Конструкции резонаторов в виде отрезков коаксиальной длинной линии могут быть изготовлены из меди, латуни и других металлов с небольшим удельным сопротивлением. Добротность этих резонаторов должна быть достаточно высокой (~100) для высокоточного измерения резонансной частоты. Упругие торцевые мембраны могут быть изготовлены из различных металлов, например элинвара (RU 2221228). Величина прогиба деформируемой торцевой стенки (мембраны) выражается следующей формулой (US 3927369):

где ΔР - разность давлений с внешней и внутренней сторон мембраны, а - радиус цилиндрической мембраны, d - ее толщина, Е - модуль упругости конкретного материала, из которого изготовлена мембрана.

В качестве материала для мембраны допустимо выбрать нержавеющую сталь. Толщина мембраны может составлять 0,1-0,2 мм, а ее диаметр 10-40 мм. Формула (7) выражает максимальную величину деформации в центре мембраны.

При использовании двух мембран одному и тому же изменению давления соответствует вдвое большее изменение информативного параметра - резонансной частоты электромагнитных колебаний отрезка длинной линии, то есть имеет место повышение чувствительности предлагаемого устройства.

Кроме того, в предлагаемом устройстве с двумя торцевыми емкостями на концах отрезка длинной линии одно и то же давление может быть измерено при вдвое меньшей величине прогиба каждой мембраны, чем в случае устройства с одной такой емкостью.

Это означает, что в предлагаемом устройстве возможно измерять вдвое большее значение давления ΔР при тех же, что и ранее, конструктивных параметрах мембраны. Во-первых, это позволяет не предъявлять столь жестких требований к этим параметрам (размерам а и d, модулю упругости Е) мембраны; во-вторых, дает возможность расширить диапазон измерения давления, поскольку прогибы упругих стенок на ту же величину, что и ранее, теперь соответствуют более высоким значениям давления.

Таким образом, предлагаемое устройство обеспечивает повышение в два раза чувствительности датчика устройства к измеряемому давлению, а также возможность измерения существенно больших значений внешнего давления при тех же параметрах датчика устройства.

Похожие патенты RU2408856C9

название год авторы номер документа
ДАТЧИК ДАВЛЕНИЯ 2018
  • Совлуков Александр Сергеевич
RU2690971C1
СПОСОБ ИЗМЕРЕНИЯ ДАВЛЕНИЯ 2017
  • Совлуков Александр Сергеевич
RU2663552C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ 2015
  • Совлуков Александр Сергеевич
RU2586388C1
ДАТЧИК ДАВЛЕНИЯ 2010
  • Скачков Сергей Анатольевич
  • Гумиров Рубин Закирович
  • Немцов Валерий Евгеньевич
  • Кошелев Иван Васильевич
RU2457451C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ 2021
  • Совлуков Александр Сергеевич
RU2760641C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СМЕСИ ВЕЩЕСТВ 1999
  • Жиров М.В.
  • Совлуков А.С.
RU2164021C2
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ 2021
  • Совлуков Александр Сергеевич
RU2786526C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА 2021
  • Совлуков Александр Сергеевич
RU2786529C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ СМЕСИ ВЕЩЕСТВ 2002
  • Гагарин М.А.
  • Бакулин В.П.
  • Жиров М.В.
  • Совлуков А.С.
  • Фатеев В.Я.
  • Кононов А.С.
  • Жиров В.М.
RU2246118C2
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ 2016
  • Совлуков Александр Сергеевич
RU2626458C1

Реферат патента 2011 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления. Техническим результатом изобретения является расширение границ области применения датчика давления и повышение его чувствительности. Устройство для измерения давления содержит датчик в виде отрезка коаксиальной длинной линии с одним торцевым конденсатором, образованным совокупностью металлической деформируемой торцевой стенки и плоской металлической пластины, присоединенной к внутреннему проводнику коаксиальной линии и установленной перпендикулярно ее продольной оси и параллельно упомянутой металлической деформируемой торцевой стенке, воспринимающей внешнее давление. Устройство для измерения давления также содержит электронный блок для возбуждения электромагнитных колебаний в отрезке длинной линии и измерения его резонансной частоты. Отрезок длинной линии выполнен П-образным и содержит подсоединенный к его второму торцу второй конденсатор, идентичный первому конденсатору. Плоская металлическая пластина второго конденсатора установлена параллельно указанной металлической деформируемой торцевой стенке. 1 ил.

Формула изобретения RU 2 408 856 C9

Устройство для измерения давления, содержащее датчик в виде отрезка коаксиальной длинной линии с одним торцевым конденсатором, образованным совокупностью металлической деформируемой торцевой стенки и плоской металлической пластины, присоединенной к внутреннему проводнику коаксиальной линии и установленной перпендикулярно ее продольной оси и параллельно упомянутой металлической деформируемой торцевой стенке, воспринимающей внешнее давление, и электронный блок для возбуждения электромагнитных колебаний в отрезке длинной линии и измерения его резонансной частоты, отличающееся тем, что отрезок длинной линии выполнен П-образным и содержит подсоединенный к его второму торцу второй конденсатор, идентичный первому конденсатору, причем плоская металлическая пластина второго конденсатора установлена параллельно указанной металлической деформируемой торцевой стенке.

Документы, цитированные в отчете о поиске Патент 2011 года RU2408856C9

Устройство для измерения давления в вакуумных системах 1990
  • Орлов Евгений Дмитриевич
  • Фохтин Александр Георгиевич
  • Трушов Анатолий Константинович
  • Попов Виктор Александрович
  • Меньшиков Михаил Романович
  • Боровой Павел Петрович
  • Петрище Франц Антонович
  • Антонов Михаил Иванович
  • Сыров Владимир Иванович
  • Чурсин Геннадий Михайлович
SU1812453A1
Датчик давления 1987
  • Николаев Станислав Георгиевич
  • Ершов Валерий Владимирович
SU1446498A1
Скважинный градиент-манометр 1975
  • Габдуллин Тимерхат Габдуллович
  • Белышев Григорий Алексеевич
  • Жувагин Иван Герасимович
  • Труфанов Виктор Васильевич
SU723108A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ 1997
  • Жибарева И.Н.
  • Коносов В.С.
  • Романов А.И.
RU2118804C1
US 4604898 A, 12.08.1986.

RU 2 408 856 C9

Авторы

Совлуков Александр Сергеевич

Вашкевич Сергей Александрович

Гумиров Рубин Закирович

Даты

2011-01-10Публикация

2009-12-04Подача