ЭЛЕКТРОРАЗРЯДНЫЙ МНОГОКАНАЛЬНЫЙ ЛАЗЕР С ДИФФУЗИОННЫМ ОХЛАЖДЕНИЕМ ГАЗОВОЙ СМЕСИ Российский патент 2011 года по МПК H01S3/22 

Описание патента на изобретение RU2410810C2

Предлагаемое изобретение относится к области лазерной техники, а точнее к электроразрядным многоканальным лазерам с диффузионным охлаждением газовой смеси.

Известные электроразрядные многоканальные лазеры с диффузионным охлаждением газовой смеси включают в свой состав герметичный корпус, штанги и торцевые плиты резонатора, объединенные в оптическую скамью, причем крышки герметично соединены с корпусом, газоразрядные трубы, расположенные в виде пакета внутри корпуса и вставленные торцами в отверстия плит оптической скамьи, систему охлаждения с прокачкой жидкости внутри корпуса для охлаждения внешних поверхностей газоразрядных труб, две крышки, герметично присоединенные к торцевым плитам, систему прокачки газовой смеси внутри газоразрядных труб, источник питания и электродную систему для подачи высокого напряжения к газоразрядным трубам и возбуждения в них тлеющего разряда, узел вывода излучения, расположенный на одной из крышек, оптический резонатор, представляющий собой оптическую скамью с закрепленными на ней задним глухим зеркалом в начале хода лазерного излучения, а также уголковые зеркальные призмы, расположенные у торцев каждой пары газоразрядных труб, обеспечивающие поворот направления выходящего излучения из каждой газоразрядной трубы на угол 180° и последовательный обход лазерного излучения по всем газоразрядным трубам от заднего глухого зеркала до узла вывода излучения [1, 2].

Основной недостаток конструкции этих лазеров заключается в том, что при большом количестве газоразрядных труб значительно усложняется система юстировки зеркал из-за большого их количества, соответствующего количеству газоразрядных труб, и малых размеров, обусловленных поперечным размером газоразрядных труб.

Известен также электроразрядный многоканальный лазер с диффузионным охлаждением газовой смеси, включающий в свой состав все вышеперечисленные элементы, причем газоразрядные трубы в пакете расположены в один ряд на равном расстоянии друг от друга, а оптические элементы резонатора представляют собой заднее глухое зеркало в начале хода лазерного излучения, установленное параллельно осям газоразрядных труб, узел вывода излучения, а также две уголковых зеркальных призмы, установленные возле обеих торцевых поверхностей пакета газоразрядных труб и полностью перекрывающие их торцы, причем плоскости биссектрис углов пересечения зеркал в уголковых зеркальных призмах перпендикулярны плоскости торцов пакета газоразрядных труб и параллельно смещены относительно друг друга на расстояние, равное половине расстояния между газоразрядными трубами, что обеспечивает поворот лазерного излучения на угол 180°, ввод его в последующую симметрично расположенную газоразрядную трубу и последовательный проход лазерного излучения по всем газоразрядным трубам от заднего глухого зеркала до узла вывода излучения [3]. В этом лазере при достаточно большом количестве газоразрядных труб в пакете упрощается конструкция поворотных и юстировочных узлов, т.к. для всех газоразрядных труб уголковые зеркальные призмы общие.

Этот лазер является наиболее близким техническим решением к заявляемому, т.е. прототипом.

Недостаток прототипа заключается в больших габаритах конструкции при большом количестве газоразрядных труб в пакете, что необходимо для увеличения выходной мощности лазера, а также снижение выходной мощности излучения лазера при передаче излучения из труб в трубы, находящиеся на значительном расстоянии друг от друга из-за дифракционных потерь, обусловленных расходимостью при волноводном режиме работы лазера.

Сущность изобретения: корпус лазера выполнен из диэлектрического материала и имеет замкнутое сечение, например цилиндр, квадрат или прямоугольник, газоразрядные трубы внутри корпуса расположены в два ряда по одной из осей симметрии сечения Х или Y на одинаковом расстоянии друг от друга. Задачами изобретения являются увеличение мощности и повышение качества лазерного излучения, а также уменьшение габаритов конструкции. Вышеуказанные задачи в представленном электроразрядном многоканальном лазере с диффузионным охлаждением газовой смеси решаются тем, что в нем газоразрядные трубы в пакете расположены в два ряда, причем переброска излучения из труб одного ряда в трубы другого ряда осуществляется двумя зеркалами, расположенными под углом 90° относительно друг друга в плоскости Y-Y, что обеспечивает минимальные потери мощности. Переброска излучения из труб в трубы в рядах осуществляется четырьмя зеркалами, расположенными под углом 90° относительно друг друга в плоскости Х-Х, что обеспечивает поворот лазерного излучения на угол 180°, ввод его в последующую симметрично расположенную газоразрядную трубу и последовательный проход лазерного излучения по всем газоразрядным трубам от заднего глухого зеркала до узла вывода излучения (фиг.2), проводя при этом последовательную передачу лазерного излучения по всем газоразрядным трубам, начиная от трубы, расположенной напротив заднего глухого зеркала, и заканчивая трубой, последней по ходу луча и находящейся напротив переднего выходного зеркала, причем плоскости заднего глухого и переднего выходного зеркал перпендикулярны осям газоразрядных труб, оптическая скамья резонатора представляет собой металлическую конструкцию из двух плит, связанных штангами с закрепленными на ней двумя корпусами, в которых расположены поворотные зеркала и корпуса юстировочных блоков, в которых расположены заднее глухое зеркало, узел вывода излучения и уголковые зеркальные призмы, торцевые плиты герметично присоединены к корпусам юстировочных блоков.

Согласно предлагаемому изобретению в электроразрядном многоканальном лазере с диффузионным охлаждением газовой смеси газоразрядные трубы внутри корпусной секции дистанционируются относительно друг друга в выполненных с достаточной точностью перегородках, изготовленных из электропроводного материала, являясь токопроводами для передачи напряжения на электроды возбуждения тлеющего разряда. Кроме того, перегородки расположены таким образом, чтобы использовать общий для газоразрядных труб электрод.

Предлагаемое изобретение обосновывается следующим образом. Расположение газоразрядных труб в два ряда и система переброски лазерного излучения должны увеличить выходную мощность лазера.

Присоединение в начале каждого прохода к торцевым плитам диафрагмы с отверстиями диаметром, меньшим внутреннего диаметра газоразрядных труб, позволяет предохранить края труб от воздействия внутрирезонаторного излучения, а также убрать лишние блики, возникающие в связи с отклонением оси внутрирезонаторного излучения от оси труб, и тем самым повысить качество выходного излучения волноводного резонатора.

Конструкция предложенного электроразрядного многоканального лазера с диффузионным охлаждением газовой смеси иллюстрируется чертежами, где на фиг.1 показан вид лазера сбоку, на фиг.2 показан ход лазерного излучения в цифрах, начиная с (1), соответствующей заднему зеркалу, и кончая (22), соответствующей выходному зеркалу.

Предлагаемый электроразрядный многоканальный лазер с диффузионным охлаждением газовой смеси работает следующим образом. Система прокачки газовой смеси осуществляет откачку атмосферного воздуха из вакуумного контура, представляющего собой объем, заключенный между крышками и торцевыми фланцами, а также внутренней поверхностью газоразрядных труб, затем в вакуумный контур напускается газовая смесь двуокиси углерода, азота и гелия. Газовая смесь при помощи системы прокачки перемещается внутри газоразрядных труб со скоростью до 1 м/с. От источника питания к электродам через электропроводные перегородки подается высокое напряжение, зажигающее тлеющий разряд для возбуждения газовой смеси. Оптическая схема резонатора позволяет осуществить энергосъем со всего объема труб и выход излучения с минимальными потерями.

Источники информации

1. Е.В.Зеленов, Е.А.Курушин, А.А.Лисин, Д.Ю.Филимонов. Известия Академии Наук, серия физич., т.57, №12, стр.123-126. 19934 стр. «Технологический одномодовый СО2-лазер, возбуждаемый разрядом переменного тока с мощностью излучения 500 Вт».

2. M.G.Galushkin, V.S.Golubev, V.Ya.Panchenko, A.P.Roshin, A.V.Soloviev. High power waveguide industrial CO2 lasers. Proc. SPIE, v.2713, p.76-84.

3. B.B.Васильцов, А.М.Забелин, Е.В.Зеленев, В.Я.Панченко, А.П.Рощин, А.Н.Сафонов. Блок генерации излучения многоканального лазера. Заявка №96113587 от 19.07.96. Патент 2108647, БИ №10 от 10.04.98 г.

Похожие патенты RU2410810C2

название год авторы номер документа
ЭЛЕКТРОРАЗРЯДНЫЙ МНОГОТРУБЧАТЫЙ ЛАЗЕР С ДИФФУЗИОННЫМ ОХЛАЖДЕНИЕМ ГАЗОВОЙ СМЕСИ 1996
  • Забелин А.М.
  • Зеленов Е.В.
  • Сафонов А.Н.
RU2097889C1
МНОГОТРУБЧАТЫЙ ГАЗОВЫЙ ЛАЗЕР 1996
  • Забелин Александр Михайлович
RU2094918C1
Многолучевой электроразрядный лазер 2017
  • Чухланцев Олег Александрович
  • Умнов Владимир Павлович
  • Мальцев Владислав Викторович
  • Рыжикова Дарья Александровна
RU2703609C2
ЭЛЕКТРООПТИЧЕСКИЙ БЛОК СО*002-ЛАЗЕРА С ПОПЕРЕЧНОЙ ПРОКАЧКОЙ РАБОЧЕЙ СМЕСИ ГАЗОВ 1996
  • Забелин А.М.
  • Александров В.О.
  • Сафонов А.Н.
RU2093940C1
ЭЛЕКТРОРАЗРЯДНЫЙ ЛАЗЕР С ПОПЕРЕЧНОЙ ПРОКАЧКОЙ ГАЗОВОЙ СМЕСИ 1996
  • Сафонов А.Н.
  • Забелин А.М.
RU2094917C1
БЛОК ГЕНЕРАЦИИ ИЗЛУЧЕНИЯ МНОГОКАНАЛЬНОГО ЛАЗЕРА 1996
  • Васильцов В.В.
  • Забелин А.М.
  • Зеленов Е.В.
  • Панченко В.Я.
  • Рощин А.П.
  • Сафонов А.Н.
RU2108647C1
БЛОК ГЕНЕРАЦИИ ИЗЛУЧЕНИЯ МНОГОКАНАЛЬНОГО ЛАЗЕРА 1996
  • Сафонов А.Н.
  • Забелин А.М.
RU2107976C1
ИМПУЛЬСНО-ПЕРИОДИЧЕСКИЙ ЭЛЕКТРОРАЗРЯДНЫЙ ЛАЗЕР ЗАМКНУТОГО ЦИКЛА (ВАРИАНТЫ) 2008
  • Кодола Борис Ефремович
RU2405233C2
БЫСТРОПРОТОЧНЫЙ ЭЛЕКТРОРАЗРЯДНЫЙ СО-ЛАЗЕР С ЗАМКНУТОЙ ПРОКАЧКОЙ ГАЗОВОЙ СМЕСИ 1995
  • Забелин А.М.
  • Александров В.О.
  • Коротченко А.В.
  • Черноус В.Н.
  • Сафонов А.Н.
RU2092950C1
БЛОК ГЕНЕРАЦИИ ИЗЛУЧЕНИЯ ЛАЗЕРА С ПОПЕРЕЧНОЙ ПРОКАЧКОЙ ГАЗОВОГО ПОТОКА 1996
  • Александров В.О.
  • Забелин А.М.
  • Сафонов А.Н.
RU2101816C1

Иллюстрации к изобретению RU 2 410 810 C2

Реферат патента 2011 года ЭЛЕКТРОРАЗРЯДНЫЙ МНОГОКАНАЛЬНЫЙ ЛАЗЕР С ДИФФУЗИОННЫМ ОХЛАЖДЕНИЕМ ГАЗОВОЙ СМЕСИ

Лазер включает герметичный корпус, оптический резонатор, газоразрядные трубы, систему охлаждения с прокачкой жидкости внутри корпуса для охлаждения внешних поверхностей газоразрядных труб, систему прокачки газовой смеси внутри газоразрядных труб, источник питания и электродную систему для возбуждения тлеющего разряда в газоразрядных трубах. Резонатор включает оптическую скамью с закрепленными на ней задним глухим зеркалом в начале хода лазерного излучения и передним выходным зеркалом, а также поворотные зеркала зеркальных призм, расположенные у торцевых поверхностей пакета газоразрядных труб, перекрывающие их торцы. Газоразрядные трубы расположены в виде пакета внутри корпуса. В пакете трубы расположены в два ряда, на одинаковом расстоянии друг от друга. Переброска излучения из труб одного ряда в трубы другого ряда обеспечивается двумя поворотными зеркалами зеркальной призмы, расположенными под углом 90° относительно друг друга. Переброска излучения из труб в трубы в рядах осуществляется четырьмя поворотными зеркалами зеркальных призм, плоскости биссектрис углов пересечения которых смещены относительно друг друга. Ввод лазерного излучения обеспечивается по всем газоразрядным трубам, начиная от трубы, расположенной напротив заднего глухого зеркала, и заканчивая трубой, последней по ходу излучения и находящейся напротив переднего выходного зеркала. Технический результат заключается в увеличении мощности излучения. 2 ил.

Формула изобретения RU 2 410 810 C2

Электроразрядный многоканальный лазер с диффузионным охлаждением газовой смеси, включающий герметичный корпус, штанги и торцевые плиты резонатора, объединенные в оптическую скамью, причем крышки герметично соединены с корпусом, газоразрядные трубы, расположенные в виде пакета внутри корпуса, и вставленные торцами в отверстия плит оптической скамьи, систему охлаждения с прокачкой жидкости внутри корпуса для охлаждения внешних поверхностей газоразрядных труб, две крышки, герметично присоединенные к торцевым плитам, систему прокачки газовой смеси внутри газоразрядных труб, источник питания и электродную систему для подачи высокого напряжения к газоразрядным трубам и возбуждения в них тлеющего разряда, оптический резонатор, включающий оптическую скамью с закрепленными на ней задним глухим зеркалом в начале хода лазерного излучения, и передним выходным зеркалом, а также поворотные зеркала зеркальных призм, расположенные у торцевых поверхностей пакета газоразрядных труб, перекрывающие их торцы, отличающийся тем, что газоразрядные трубы расположены в пакете в два ряда на одинаковом расстоянии друг от друга, при этом переброска излучения из труб одного ряда в трубы другого ряда обеспечивается двумя поворотными зеркалами зеркальной призмы, расположенными под углом 90° относительно друг друга, а переброска излучения из труб в трубы в рядах осуществляется четырьмя поворотными зеркалами зеркальных призм, плоскости биссектрис углов пересечения которых смещены относительно друг друга, причем обеспечивается ввод лазерного излучения по всем газоразрядным трубам, начиная от трубы, расположенной напротив заднего глухого зеркала, и заканчивая трубой, последней по ходу излучения и находящейся напротив переднего выходного зеркала.

Документы, цитированные в отчете о поиске Патент 2011 года RU2410810C2

БЛОК ГЕНЕРАЦИИ ИЗЛУЧЕНИЯ МНОГОКАНАЛЬНОГО ЛАЗЕРА 1996
  • Васильцов В.В.
  • Забелин А.М.
  • Зеленов Е.В.
  • Панченко В.Я.
  • Рощин А.П.
  • Сафонов А.Н.
RU2108647C1
МОЩНЫЙ ВОЛНОВОДНЫЙ ГАЗОВЫЙ ЛАЗЕР 1993
  • Филимонов Дмитрий Юрьевич
  • Васильцов Виктор Владимирович
  • Зеленов Евгений Викторович
  • Ли Ги Бон
RU2062541C1
US 4878227 A, 31.10.1989
Оптический узел поворотных зеркал лазера со складным резонатором 1988
  • Козлов А.В.
  • Оськин В.А.
  • Косарев И.И.
  • Сипайло А.А.
  • Самородов В.Г.
SU1547646A1
US 2006209396 A1, 21.09.2006.

RU 2 410 810 C2

Авторы

Александров Владимир Олегович

Васильцов Виктор Владимирович

Панченко Владислав Яковлевич

Даты

2011-01-27Публикация

2008-12-15Подача