Изобретение относится к области медицины, а именно к изделиям медицинского назначения, используемым в качестве офтальмологического средства, содержащего рибофлавин и вспомогательные вещества, применяемого для процедуры кросслинкинга при эктазиях роговицы.
Известные средства для роговичного коллагенового кросслинкинга обеспечивают укрепление роговицы глаза за счет фотополимеризации стромальных волокон, вследствие комбинированного воздействия фотосенсибилизирующего вещества (рибофлавин) и ультрафиолетового излучения (A.Caporossi, С.Mazzotta, S.Baiocchi. Technological Innovations in Corneal Collagen Cross-Linking // Ophthalmology Times Europe. Sept. 2007).
Прототипом изобретения является офтальмологическое средство для роговичного коллагенового кросслинкинга, содержащее рибофлавина фосфат, декстран, натрия хлорид, дигидрофосфат натрия бигидрат, гидрофосфат динатриевая соль бигидрат и воду дистиллированную (там же). Однако данные средства не обеспечивают в достаточной степени стабильности действующего вещества, в связи с чем могут ограничивать срок его применения.
Задачей изобретения является разработка эффективного средства для коллагенового кросслинкинга с продолжительным сроком годности.
Технический результат при использовании изобретения - пролонгированное действие средства, повышение его химической и бактериологической устойчивости в растворе.
Указанный технический результат достигается тем, что офтальмологическое средство для кросслинкинга, содержащее рибофлавина-мононуклеотид, декстран, натрия хлорид и воду дистиллированную очищенную, согласно изобретению дополнительно содержит трис-(гидроксиметил)-метиламин, нипагин, трилон Б при следующем соотношении компонентов, мас.%:
Характеристика компонентов.
Рибофлавина-мононуклеотид (рибофлавин-5'-монофосфат натрия) - кристаллический порошок желто-оранжевого цвета. Водный раствор имеет желтовато-оранжевый цвет, интенсивно флюоресцирует в ультрафиолетовом свете. Введен в состав предлагаемого средства в концентрации 0,15 мас.%. Важно отметить, что растворимость рибофлавина мононуклеотида натрия значительно выше, чем рибофлавина.
Декстран - полимер глюкозы, белый аморфный порошок, растворимый в воде. Молекулярная масса, 450-550 Да. В офтальмологическое средство декстран введен в концентрации 20 мас.% с целью придания ему вязкости, пролонгации терапевтического эффекта, обеспечения противоотечного действия. Кроме этого, вязкие полимеры позволяют лучше переносить инсталляции и обеспечивают продолжительный контакт лекарственных веществ со слизистой.
Трис-(гидроксиметил)-метиламин, трис - белый кристаллический порошок, хорошо растворим в воде. Введен в состав предлагаемого средства в качестве буфера в концентрации 0,1 мас.%.
Трилон Б (динатриевая соль этилендиаминтетрауксусной кислоты) представляет собой белый кристаллический порошок без запаха, хорошо растворимый в воде (ФС 42-1173-78 или ГОСТ 10652-73). Трилон Б связывает ионы тяжелых металлов, применяется в качестве стабилизатора для приготовления инъекционных растворов и глазных капель. В офтальмологическое средство трилон Б введен в качестве стабилизирующего компонента в концентрации 0,075 мас.%.
Нипагин - метиловый эфир n-оксибензойной кислоты, белый кристаллический порошок, плохо растворимый в воде (ФС 42-1460-80). Широко используется как консервант при приготовлении инъекционных растворов, глазных капель. В офтальмологическое средство нипагин введен как консервант, способствующий сохранению стерильности средства при хранении и в процессе его использования. Содержание нипагина в растворе составляет 0,01, поскольку оптимальными концентрациями, в которых он проявляет антимикробное действие, являются 0,01-0,05 мас.%.
Натрия хлорид - белый кристаллический порошок, хорошо растворим в воде. Натрия хлорид введен в состав предложенного раствора в качестве средства, обеспечивающего физиологическое осмотическое давление раствора.
Предлагаемое средство получают следующим образом. 0,15 г рибофлавина-мононуклеотида растворяется при нагревании в 100 мл свежеприготовленной дистиллированной воды. Затем помещается 0,85 г натрия хлорида и 0,1 г трис-(гидроксиметил)-метиламина. Далее последовательно растворяются нипагин 0,01 г и трилон Б 0,075 г. На поверхность раствора при нагревании и постоянном перемешивании порциями вносится декстран 20,0 г до полного растворения. Полученный раствор фильтруется через мембранный фильтр, фасуется во флаконы, которые укупориваются резиновыми пробками, обкатываются алюминиевыми колпачками и затем автоклавируются при 0,5 атм и 110°C в течение 30 минут. Хранится в защищенном от света месте. Срок годности 2 года.
При выполнении экспериментальных исследований проводилась биомикроскопия и офтальмоскопия после ежедневных инстилляций предложенного средства 8-ми кроликам (1-ая группа) в течение 14 дней. Парный глаз служил контролем.
Во второй группе животных (8 кроликов) проводилась процедура кросслинкинга - инстилляций предлагаемого офтальмологического средства сопровождались одновременным ультрафиолетовым облучением роговицы глаза кроликов устройством «УФалинк» (регистрационное удостоверение № ФСР 2009/05489) в течение 30 минут (6 интервалов по 5 мин, при длине волны 370 нм).
В третьей экспериментальной группе (8 кроликов) указанная процедура облучения устройством «УФалинк» проводилась после деэпителизации роговицы диаметром 4 мм под местной анестезией (инокаин 0,4%).
В 3-й группе в течение первого дня после процедуры наблюдался невыраженный отек роговицы. В последующем установлено, что применение предложенного офтальмологического средства во всех экспериментальных группах не выявило какого-либо токсического или раздражающего действия при биомикроскопии и офтальмоскопии в течение 2-х недель, что было подтверждено морфологическими исследованиями энуклеированных глаз животных.
В клинические наблюдения были включены 6 пациентов (6 глаз) в возрасте от 19 до 44 лет с диагнозом кератоконус II-III стадии (по классификации Amsler). Помимо традиционных офтальмологических методов исследования были проведены конфокальная биомикроскопия (HRT-III, Heidelberg, Германия), оптикокогерентная томография (ОКТ) (Vizante-OCT, Carl Zeiss, США).
Отек наружных слоев стромы роговицы наблюдали у 57,2% больных, который проходил на 2-3 день к моменту завершения эпителизации. Через месяц у этих пациентов отмечалось увеличение корригированной остроты зрения до 0,49±1,09 (p<0,05). Величина роговичного астигматизма уменьшилась на 2,14±1,25 D (p<0,05). Значение преломляющей силы роговицы первоначально снизилось с 52,01±0,39 до 49,12±0,24 D, а на период последних обследований (6-12 месяцев) составило 50,03±1,29 D (p<0,05). Радиус кривизны увеличился до 6,85±0,15 мм. В сроки от 1 до 3 месяцев наблюдалось постепенное уменьшение толщины роговицы до 30,02±0,12 микрон. При проведении конфокальной микроскопии, через 1 месяц в передней строме выявлялся умеренный апоптоз кератоцитов, который определялся в виде высокоотражательной сетчатой структуры, задняя и средняя порции стромы сохранялись без существенных изменений.
За время наблюдений (12 месяцев) каких-либо осложнений, связанных с использованием данного офтальмологического средства, не отмечалось.
Предлагаемое изобретение иллюстрируется следующим клиническим примером. Больной Р., 35 лет, поступил с диагнозом: кератоконус II стадии. Данные обследования: острота зрения - 0,3. Величина роговичного астигматизма - 5,2 D, радиус кривизны роговицы - 6,52 мм, толщина роговицы в центре - 445 мкм по данным оптикокогерентной томографии (ОКТ).
Процедура кросслинкинга проводилась в условиях операционной. Под местной анестезией (2% раствор лидокаина гидрохлорида), после деэпителизации роговицы диаметром 7 мм, производились инстилляции предлагаемого офтальмологического средства в течение 15 минут, затем шестикратное облучение (по 5 минут) роговицы с использованием устройства «УФалинк» с одновременными инсталляциями предлагаемого офтальмологического средства. В послеоперационном периоде применялась местная антибактериальная и дегидратационная терапия.
В первый день после процедуры кросслинкинга у пациента наблюдали незначительный отек наружных слоев роговицы, который проходил к моменту завершения эпителизации. Через 30 дней отмечалось увеличение корригированной остроты зрения до 0,4. Роговичный астигматизм снизился на 2,0 D, радиус кривизны роговицы - 6,70 мм, толщина роговицы в центре составила 440 мкм (на ОКТ).
Таким образом, состав основных и действующих веществ, входящих в предлагаемое офтальмологическое средство, обеспечивает эффективное и безопасное проведение процедуры кросслинкинга, применяемой в лечении начальных стадий эктазий роговицы. Средство имеет продолжительный срок годности, в течение которого сохраняет стерильность.
название | год | авторы | номер документа |
---|---|---|---|
ОФТАЛЬМОЛОГИЧЕСКОЕ СРЕДСТВО-2 ДЛЯ КРОССЛИНКИНГА | 2012 |
|
RU2475248C1 |
ОФТАЛЬМОЛОГИЧЕСКОЕ СРЕДСТВО ДЛЯ ТРАНСЭПИТЕЛИАЛЬНОГО УЛЬТРАФИОЛЕТОВОГО КРОССЛИНКИНГА КОЛЛАГЕНА РОГОВИЦЫ ГЛАЗА | 2014 |
|
RU2560669C1 |
ОФТАЛЬМОЛОГИЧЕСКОЕ СРЕДСТВО ДЛЯ УЛЬТРАФИОЛЕТОВОГО КРОССЛИНКИНГА РОГОВИЦЫ | 2016 |
|
RU2646452C1 |
ГИПООСМОТИЧЕСКОЕ ОФТАЛЬМОЛОГИЧЕСКОЕ СРЕДСТВО ДЛЯ УЛЬТРАФИОЛЕТОВОГО КРОССЛИНКИНГА ТОНКИХ РОГОВИЦ | 2016 |
|
RU2631604C1 |
СПОСОБ ЛЕЧЕНИЯ КЕРАТЭКТАЗИЙ МЕТОДОМ ИМПУЛЬСНОГО АКСЕЛЕРИРОВАННОГО УЛЬТРАФИОЛЕТОВОГО КРОССЛИНКИНГА РОГОВИЦЫ | 2017 |
|
RU2682494C1 |
КОМБИНИРОВАННЫЙ СПОСОБ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ РОГОВИЦЫ С ПРИМЕНЕНИЕМ КЕРАТОПЛАСТИКИ И КРОССЛИНКИНГА | 2017 |
|
RU2676434C1 |
СПОСОБ ЛЕЧЕНИЯ ЭПИТЕЛИАЛЬНО-ЭНДОТЕЛИАЛЬНОЙ ДИСТРОФИИ РОГОВИЦЫ | 2019 |
|
RU2703361C1 |
СПОСОБ ПОЛУЧЕНИЯ РОГОВИЧНОГО ТРАНСПЛАНТАТА ДЛЯ ПОСЛОЙНОЙ КЕРАТОПЛАСТИКИ | 2019 |
|
RU2723135C1 |
СПОСОБ ЛЕЧЕНИЯ ГЕРПЕТИЧЕСКОГО КЕРАТИТА | 2013 |
|
RU2531426C1 |
СПОСОБ ПРОВЕДЕНИЯ УЛЬТРАФИОЛЕТОВОГО КРОССЛИНКИНГА РОГОВИЦЫ С ПРИМЕНЕНИЕМ БИОЛИНЗЫ ПРИ ТОНКИХ РОГОВИЦАХ | 2020 |
|
RU2739995C1 |
Изобретение относится к области медицины, а именно к изделиям медицинского назначения, используемым в качестве офтальмологического средства, содержащего рибофлавин и вспомогательные вещества, применяемого для процедуры кросслинкинга при эктазиях роговицы. Средство содержит рибофлавина-мононуклеотид, декстран, натрия хлорид, трис-(гидроксиметил)-метиламин, нипагин, трилон Б и воду дистиллированную, очищенную при определенном соотношении компонентов. Изобретение обеспечивает пролонгированное действие офтальмологического средства, повышает его химическую и бактериологическую устойчивость в растворе.
Офтальмологическое средство для кросслинкинга, содержащее рибофлавина-мононуклеотид, декстран, натрия хлорид и воду дистиллированную очищенную, отличающееся тем, что оно дополнительно содержит трис-(гидроксиметил)-метиламин, нипагин, трилон Б при следующем соотношении компонентов, мас.%:
CAPOROSSI A.et al | |||
Tecnological innovations in corneal collagen cross-linking | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Найдено в Интернет [онлайн] http://www.oteurope.com/ophthalmologytimeseurope/Cornea/Technological-innovati | |||
ОФТАЛЬМОЛОГИЧЕСКОЕ СРЕДСТВО И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1992 |
|
RU2007152C1 |
СРЕДСТВО ДЛЯ ЛЕЧЕНИЯ ТЯЖЕЛЫХ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ И СМЕШАННЫХ ИНФЕКЦИЙ | 2008 |
|
RU2366450C1 |
US 20050250756, 10.11.2005 | |||
CN 101468114 А, 01.07.2007. |
Авторы
Даты
2011-02-27—Публикация
2009-10-21—Подача