АНОД ЭЛЕКТРОРАКЕТНОГО ДВИГАТЕЛЯ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ Российский патент 2011 года по МПК F03H1/00 

Описание патента на изобретение RU2421630C2

Изобретение относится к области электроракетных двигателей.

Известен анод электроракетного двигателя с замкнутым дрейфом электронов [1], включающий корпус и входной и выходной коллекторы, при этом входной коллектор связан с анодной магистралью и имеет отверстия, сообщающие его с выходным коллектором, снабженным системой отверстий.

Недостатком известного анода является то, что существует вероятность нарушения герметичности газоподвода или попадания в газоподвод или анод посторонних частиц, что приводит к снижению надежности анода из-за возможного отказа его блока.

Технический результат, на достижение которого направлено предлагаемое изобретение заключается в увеличении ресурса, уменьшении массы и повышении надежности анода.

Указанный технический результат достигается тем, что анод электроракетного двигателя с замкнутым дрейфом электронов, включающий корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с выходным коллектором, снабженным системой отверстий. Новым является то, что входной коллектор выполнен в виде двух пневматически изолированных коллекторов, герметично соединенных с соответствующими изолированными друг от друга анодными магистралями, при этом каждый из входных коллекторов снабжен отверстиями, сообщающими их с выходным коллектором.

На фиг.1 приведена пневмосхема известного тягового модуля (ТМ), содержащего известный анод.

На фиг.2 показана пневмоэлектрическая схема известного тягового модуля, содержащего предложенный анод.

На фиг.3 приведена конструкция анода.

Тяговый модуль состоит из стационарного плазменного двигателя 1 (СПД) и блока газораспределения 2 (БГР).

В состав СПД входят анод 3, катоды 4 и магнитная система 5 (см. фиг.2). Каждый катод включает поджигной электрод 6 и нагреватель 7.

БГР 2 содержит клапаны, например электроклапаны 8, регулируемые дроссели, например термодроссели 9, число которых равно количеству катодов, нерегулируемые дроссели (жиклеры) 10, пневматически изолированные друг от друга катодные магистрали 12, каждая из которых пневматически связана с соответствующей анодной магистралью 13, образуя две пневматически развязанные пары катод-анодных магистралей.

Каждый из регулируемых дросселей 9 установлен между местом пневматической стыковки 11 анодного и соответствующего катодного трубопроводов и нерегулируемым дросселем 10 анодной магистрали.

Изображенный на фиг.3 анод 3 состоит из корпуса 14, двух пневматически изолированных друг от друга (до входа в анод) входных коллекторов 15 и выходного коллектора 17. При этом входные коллекторы 15 с одной стороны герметично соединены с соответствующими анодными магистралями 13 и с другой стороны имеют систему отверстий 16, сообщающих входные коллекторы 15 с выходным коллектором 17, снабженным системой выходных отверстий 18.

Анод с тяговым модулем работают следующим образом.

Предварительно разогревают выбранный катод 4 с помощью нагревателя 7 и включают дежурный режим термодросселя 9. Открывают электроклапаны 8 выбранного катода 4. Подают напряжение на анод-катод и поджигной электрод 6 СПД. При этом термодроссель 9 работает в дежурном режиме, обеспечивающем повышенный расход рабочего тела (ксенона) в анод.

При достижении значения тока разряда 0,8 А термодроссель переводится в рабочий режим, а при возрастании тока разряда до величины 0,8 от номинального значения отключают поджиг и нагрев катода. При этом термодроссель регулирует расход рабочего тела только в соответствующий коллектор 15 анода 3, поддерживая номинальное значение тока разряда. Расход рабочего тела в катод практически сохраняется постоянным, и поэтому колебания тока разряда не могут уменьшить величину расхода рабочего тела в катод до предельных значений, приводящих к отключению разряда ТМ, т.к. расход рабочего тела в катод определяется в основном давлением рабочего тела в коллекторе СХП, которое поддерживается постоянным. В частности, для электроракетной двигательной установки (ЭРДУ) «Ямал» оно составляет 1,75±0,1 кгс/см2.

В таком тяговом модуле выше надежность анодного блока, благодаря наличию двух пневматически изолированных анодных магистралей 13. Наличие двух анодных магистралей позволит уменьшить количество сварных швов, что также повысит надежность тягового модуля.

Кроме того следует отметить, что допускается более широкий диапазон регулирования расхода рабочего тела в анод, т.к. при поддержании постоянного расхода рабочего тела в катод регулирование расхода в анод не влияет на работоспособность катода.

Литература

1. Boris Arkhipov et. al., U.S. Patent №5,359,258 (Oct.25, 1994) «Plazma Accelerator with Closed Electron Drift».

2. Агеев В.П. и др. Длительная эксплуатация электроракетных двигателей в составе геостационарного информационного космического аппарата «Ямал». Ракетно-космическая техника. Серия XII. Выпуск 1-2. Часть 4. Г.Королев. РКК "Энергия", 2003. С.7-10.

3. Boris Arkhipov et. al., U.S. Patent №5,359,254 (Oct.25, 1994) «Plazma Compensator Cathode».

4. Архипов Б.А. «Исследование и разработка катодов нового поколения для СПД», Автореферат диссертации на соискание ученой степени д.т.н., г.Калининград, 1998 г.

Похожие патенты RU2421630C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СИСТЕМЫ ПОДАЧИ РАБОЧЕГО ТЕЛА К ИСТОЧНИКУ ПЛАЗМЫ 2008
  • Ковтун Владимир Семенович
  • Пищулин Владимир Алексеевич
  • Ковтун Татьяна Алексеевна
RU2392589C2
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ СИСТЕМЫ ПОДАЧИ РАБОЧЕГО ТЕЛА К ИСТОЧНИКУ ПЛАЗМЫ, ПРЕИМУЩЕСТВЕННО В УСЛОВИЯХ ВАКУУМА 2008
  • Ковтун Владимир Семенович
  • Бедин Борис Иванович
  • Фомин Леонид Валентинович
  • Калинкин Дмитрий Анатольевич
RU2377522C1
ИМИТАТОР ЭЛЕКТРОРАКЕТНОЙ ПЛАЗМЕННОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ 2009
  • Катасонов Николай Михайлович
RU2395716C1
ДИНАМИЧЕСКИЙ ИМИТАТОР СТАЦИОНАРНЫХ ПЛАЗМЕННЫХ ДВИГАТЕЛЕЙ 2015
  • Соколов Владимир Валентинович
  • Козубский Константин Николаевич
  • Мокеров Николай Александрович
  • Барковский Валентин Михайлович
  • Рыбальченко Людмила Владимировна
RU2610623C1
ДВИГАТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ 2012
  • Щербина Павел Александрович
  • Островский Валерий Георгиевич
RU2524315C2
СПОСОБ ЗАПУСКА И ЭЛЕКТРОПИТАНИЯ ЭЛЕКТРОРЕАКТИВНОГО ПЛАЗМЕННОГО ДВИГАТЕЛЯ (ЕГО ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ЕГО ВАРИАНТЫ) 2008
  • Козубский Константин Николаевич
  • Мурашко Вячеслав Михайлович
  • Гопанчук Владимир Васильевич
  • Олотин Сергей Владимирович
RU2366123C1
СПОСОБ УПРАВЛЕНИЯ СТАЦИОНАРНЫМ ПЛАЗМЕННЫМ ДВИГАТЕЛЕМ 2016
  • Ковтун Владимир Семёнович
  • Фролов Игорь Владимирович
  • Пищулин Владимир Алексеевич
RU2647749C2
ЭЛЕКТРОРАКЕТНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ) И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ 2005
  • Островский Валерий Георгиевич
RU2309293C2
ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ 2010
  • Гопанчук Владимир Васильевич
  • Потапенко Мира Юрьевна
RU2426007C1
УСТРОЙСТВО ДЛЯ НАЗЕМНОЙ ПРОВЕРКИ ПНЕВМОМОНТАЖА ЭЛЕКТРОРЕАКТИВНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ 1994
  • Агеев В.П.
  • Островский В.Г.
  • Марков А.В.
RU2097601C1

Иллюстрации к изобретению RU 2 421 630 C2

Реферат патента 2011 года АНОД ЭЛЕКТРОРАКЕТНОГО ДВИГАТЕЛЯ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ

Изобретение относится к области электроракетных двигателей. Анод электроракетного двигателя с замкнутым дрейфом электронов включает корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с выходным коллектором, снабженным системой отверстий, причем входной коллектор выполнен в виде двух пневматически изолированных коллекторов, герметично соединенных с соответствующими изолированными друг от друга анодными магистралями, при этом каждый из входных коллекторов снабжен отверстиями, сообщающими их с выходным коллектором. Изобретение позволяет уменьшить массу тягового модуля, повысить надежность и ресурсоспособность анодного и катодного блоков двигателя. 3 ил.

Формула изобретения RU 2 421 630 C2

Анод электроракетного двигателя с замкнутым дрейфом электронов, включающий корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с выходным коллектором, снабженным системой отверстий, отличающийся тем, что входной коллектор выполнен в виде двух пневматически изолированных коллекторов, герметично соединенных с соответствующими изолированными друг от друга анодными магистралями, при этом каждый из входных коллекторов снабжен отверстиями, сообщающими их с выходным коллектором.

Документы, цитированные в отчете о поиске Патент 2011 года RU2421630C2

ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ 2001
  • Сорокин И.Б.
  • Гопанчук В.В.
RU2209533C2
US 5359258 А1, 25.10.1994
RU 2004103202 А, 10.07.2005
СИСТЕМА ПОДАЧИ РАБОЧЕГО ТЕЛА ПЛАЗМЕННЫХ УСКОРИТЕЛЕЙ (ВАРИАНТЫ) 1992
  • Королев С.К.
  • Козубский К.Н.
  • Комаров Г.А.
  • Кондаков Ю.Г.
RU2032282C1
УСКОРИТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ 1995
  • Семенкин А.В.
  • Гаркуша В.И.
  • Твердохлебов С.О.
  • Ляпина Н.А.
RU2084085C1
ИНТРАТЕКАЛЬНАЯ ДОСТАВКА РЕКОМБИНАНТНОГО АДЕНОАССОЦИИРОВАННОГО ВИРУСА, КОДИРУЮЩЕГО МЕТИЛ-CPG-СВЯЗЫВАЮЩИЙ БЕЛОК 2 2017
  • Каспар, Брайан, К.
  • Фауст, Кевин
RU2788084C2

RU 2 421 630 C2

Авторы

Островский Валерий Георгиевич

Попов Александр Николаевич

Даты

2011-06-20Публикация

2008-09-18Подача