СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ Российский патент 2011 года по МПК F02B9/02 F02B75/28 

Описание патента на изобретение RU2422651C1

Изобретение относится к двигателестроению, а именно к поршневым двигателям внутреннего сгорания.

Известен спаренный поршневой двигатель внутреннего сгорания (патент РФ №2078963 от 07.06.1994), содержащий два цилиндра с общей камерой сгорания, два коленвала, связанные между собой передачей 1:2, причем, когда один поршень находится в своей верхней мертвой точке, а другой с его опережением на 45 угловых градусов, или близкий к нему, от своей верхней мертвой точки. Рабочие объемы цилиндров равны.

Известное техническое решение обладает рядом недостатков:

- необходимость продувки камеры сгорания воздухом после такта выпуска уменьшает КПД двигателя;

- двигатель не может работать на гомогенизированной топливно-воздушной смеси в режиме компрессионного воспламенения;

- увеличение передаточного отношения 1:2 между валами усложняет конструкцию и снижает ее надежность

Наиболее близким к изобретению по технической сущности является работа двигателя внутреннего сгорания (а.с. СССР №1229397 от 30.01.1981), содержащего основной цилиндр и меньший по объему дополнительный цилиндр с общей камерой сгорания и поршнями, соединенными с индивидуальными коленвалами, кинематически связанными между собой и сдвинутыми относительно друг друга на 46-85° через муфту сдвига фаз вращений, с возможностью вращения с разной частотой, причем валы кинематически связаны между собой в соотношении 1:2, а объем дополнительного цилиндра составляет 5-10% от основного цилиндра.

Однако это решение также обладает недостатками:

- двигатель работает, сжимая воздух до такой степени, чтобы впрыснутое в него топливо воспламенилось, т.е. как дизельный двигатель с высокой степенью сжатия;

- наличие редуктора для кинематической связи валов между собой в соотношении 1:2 усложняет конструкцию двигателя и снижает его надежность;

- топливно-воздушная смесь воспламеняется от сжатия обоими поршнями, что затрудняет точное воспламенение топливно-воздушной смеси от сжатия в ВМТ основного поршня;

- двигатель не может работать на гомогенизированной топливно-воздушной смеси в режиме компрессионного воспламенения.

Задачей, на решение которой направлено настоящее изобретение, является возможность контроля и регулирования момента самовоспламенения гомогенизированной топливно-воздушной смеси.

Техническим результатом изобретения является смещение точки перехода изменения суммарного объема камер сгорания, от увеличения к уменьшению, и, наоборот, от положения основного поршня в своих ВМТ и НМТ, упрощение конструкции, снижение удельного расхода топлива и улучшение экологических характеристик двигателя.

Указанная задача решается, а технический результат достигается за счет того, что при способе работы двигателя внутреннего сгорания, включающем подачу заряда в камеры сгорания соединенных друг с другом основного и дополнительного цилиндров с разными диаметрами, в которых размещены поршни, сжатие заряда поршнями в обоих цилиндрах, причем поршень дополнительного цилиндра задерживается по фазе вращения вала от поршня основного цилиндра, и, по достижении поршнем основного цилиндра своей верхней мертвой точки, дожатие заряда поршнем дополнительного цилиндра, согласно изобретению в цилиндры подают гомогенизированную топливовоздушную смесь, сжимают ее двумя поршнями, причем поршнем основного цилиндра сжимают смесь, не доводя ее до самовоспламенения и подготавливая ее таким образом к последующему быстрому воспламенению, а поршнем дополнительного цилиндра дожимают сжатую гомогенизированную топливно-воздушную смесь, доводят ее температуру и давление в камере сгорания до компрессионного самовоспламенения смеси.

Поставленная задача достигается также тем, что объем камеры основного цилиндра над поршнем задают минимально возможным в момент нахождения его в своей верхней мертвой точке.

Поставленная задача достигается также тем, что после начала дожатия гомогенизированной топливовоздушной смеси поршнем дополнительного цилиндра в камеру сгорания впрыскивают топливо, отличающееся по составу от используемого для приготовления гомогенизированной топливно-воздушной смеси, которому достаточны достигнутые давление и температура для его воспламенения.

Поставленная задача достигается также тем, что после начала дожатия гомогенизированной топливовоздушной смеси поршнем дополнительного цилиндра, в камеру сгорания впрыскивают топливо, отличающееся по составу от используемого для приготовления гомогенизированной топливно-воздушной смеси, и принудительно воспламеняют его свечой зажигания.

Поставленная задача достигается также тем, что применяют свечу-форсунку со своей микрокамерой сгорания, в которую, в такте всасывания, подают топливо, отличающееся по составу от используемого для приготовления гомогенизированной топливно-воздушной смеси, и принудительно воспламеняют его в начале рабочего хода.

Поставленная задача достигается также тем, что в камеру сгорания подают обогащенный гомогенизированный топливно-воздушный заряд с использованием топлива, отличающегося по составу от используемого для приготовления гомогенизированной топливо-воздушной смеси, который принудительно воспламеняют свечой зажигания.

Поставленная задача достигается также тем, что после компрессионного самовоспламенения гомогенизированной топливовоздушной смеси в камеру сгорания впрыскивают дополнительную порцию топлива.

Поставленная задача достигается также тем, что угловую величину отставания вращения вала поршня дополнительного цилиндра от вала поршня основного цилиндра устанавливают в пределах до 120° и регулируют указанную величину путем относительного смещения фаз вращения валов.

Поставленная задача достигается также тем, что момент самовоспламенения гомогенизированной топливовоздушной смеси дополнительно регулируют путем изменения момента закрытия выпускного запорного органа.

Поставленная задача достигается также тем, что момент самовоспламенения гомогенизированной топливовоздушной смеси дополнительно регулируют путем изменения степени наддува.

Поставленная задача достигается также тем, что величину хода поршня дополнительного цилиндра задают отличной от величины хода поршня основного цилиндра.

Поставленная задача достигается также тем, что основной (основные) и дополнительный (дополнительные) поршни устанавливают на разных несоосных валах, кинематически связывают друг с другом и вращают с одинаковой частотой.

Поставленная задача достигается также тем, что поршни основного и дополнительного цилиндров устанавливают с фиксированным значением смещения одного поршня относительно другого.

Описываемое изобретение реализуется в двигателе внутреннего сгорания (фиг.1), состоящем из основного цилиндра 1, внутри которого находится основной поршень 2, и дополнительного цилиндра 3, внутри которого находится дополнительный поршень 4. Основной поршень 2 и основной цилиндр 1 образуют камеру сгорания 5, а дополнительный поршень 4 и дополнительный цилиндр 3 образуют камеру сгорания 6, которые соединены вместе и образуют общую камеру сгорания в верхней части цилиндров 1 и 3. В общей камере сгорания установлены впускной запорный орган 7, выпускной запорный орган 8, форсунка 9 и свеча зажигания 10. Коленвалы обоих поршней сединены между собой через механизм сдвига фаз вращений 11. За счет наличия дополнительного поршня 4, коленвал которого отстает по фазе вращения от коленвала основного поршня, точки перехода изменения суммарного объема камер сгорания 5 и 6, от увеличения к уменьшению и наоборот, не совпадают с положениями основного поршня в своих ВМТ и НМТ, а отстают на расчетную величину, определяемую угловым значением положений обоих коленвалов относительно друг друга.

На чертеже (фиг.1) показаны цифрами все узлы и детали двигателя, необходимые для понимания принципов способа работы двигателя. На чертежах продольного сечения показаны основные процессы работы поршневого двигателя внутреннего сгорания, но не показаны кривошипно-шатунные механизмы с валами, а только положения обоих поршней на текущий момент работы двигателя. Направления движения клапанов и поршней показаны стрелками, причем в момент нахождения обоих поршней в своих верхних и нижних мертвых точках стрелки отсутствуют. Свеча-форсунка отдельно не показана.

Двигатель функционирует следующим образом

В начале работы двигателя внутреннего сгорания основной поршень 2 находится в своей ВМТ (фиг.2), образуя минимально конструктивно возможный объем камеры сгорания 5, а дополнительный поршень 4, отставая от основного поршня 2 по фазе вращения, движется к своей ВМТ. Выпускной запорный орган 8 открыт для выпуска остатков отработанных газов предыдущего цикла из общей камеры сгорания. По мере движения основного поршня 2 от ВМТ вниз и продолжения движения дополнительного поршня 4 вверх, линейная скорость начала движения основного поршня 2 начинает возрастать с нулевой отметки, в то время как скорость дополнительного поршня 4 намного превышает скорость основного поршня 2, то это приводит, сначала, к уменьшению суммарного объема камер сгорания 5 и 6, а затем, после прохождения верхней точки перехода, к его увеличению. Выпускной запорный орган 8 закрывается, открывается впускной запорный орган 7 и начинается подача гомогенизированной топливно-воздушной смеси в расширяющуюся общую камеру сгорания (фиг.3). При необходимости оставления части отработанных газов в общей камере сгорания выпускной запорный орган 8 целесообразно закрыть раньше, до начала увеличения объема общей камеры сгорания. При достижении своей ВМТ дополнительный поршень 4 меняет вектор движения на противоположный (фиг.4). При достижении основным поршнем 2 своей НМТ (фиг.5) дополнительный поршень 4 продолжает движение вниз. Линейная скорость начала движения основного поршня 2 начинает возрастать с нулевой отметки, в то время как скорость дополнительного поршня 4 намного превышает скорость основного поршня 2, то это приводит, сначала, к увеличению суммарного объема камер сгорания 5 и 6, а затем, после прохождения нижней точки перехода, к его уменьшению. Впускной запорный орган 7, в начале уменьшения суммарного объема, закрывается, и подача гомогенизированной топливно-воздушной смеси прекращается. При движении основного поршня 2 вверх начинается сжатие заряда гомогенизированной топливно-воздушной смеси сначала основным поршнем 2, а затем и дополнительным поршнем 4, после прохождения им своей нижней мертвой точки (фиг.6). Объем общей камеры сгорания подбирается таким образом, чтобы при достижении основным поршнем 2 своей ВМТ сжатая гомогенизированная топливно-воздушная смесь имела температуру, близкую к точке самовоспламенения, но не достигала ее (фиг.7). При нахождении основного поршня 2 в своей ВМТ его рабочая поверхность и крышка основного цилиндра образуют минимально конструктивно возможный объем камеры сгорания 6, сконцентрировав весь заряд сжатой гомогенизированной топливно-воздушной смеси в камере сгорания 5, где дополнительный поршень 4 продолжает дожимать гомогенизированную топливно-воздушную смесь. Учитывая, еще раз, что линейная скорость начала движения основного поршня 2 начинает возрастать с нулевой отметки, в то время как скорость дополнительного поршня 4 намного превышает скорость основного поршня 2, а верхняя точка перехода изменения суммарного обема камер сгорания 5 и 6, от уменьшения к увеличению, еще не достигнута, то это приводит к дальнейшему дожатию гомогенизированной топливно-воздушной смеси и быстрому достижению температуры объемного самовоспламенения гомогенизированной топливно-воздушной смеси (фиг.8). (Например, если сдвиг фаз вращения вращения валов равен 90 угловых градусов, то, при нахождении основного поршня 2 в своей ВМТ, линейная скорость дополнительного поршня 4, в этот момент, будет максимальной.) Высокое давление горящих газов одновременно воздействует на рабочие поверхности основного поршня 2, начавшего движение от своей ВМТ, и дополнительного поршня 4, еще не дошедшего до своей ВМТ. Так как площадь основного поршня 2 в несколько раз превышает площадь дополнительного поршня 4, то сила давления на основной поршень 2 во столько же раз больше, чем сила давления на дополнительный поршень 4. Это приведет к тому, что основной поршень 2 будет совершать рабочий ход, а дополнительный поршень 4 принудительно продолжит свое движении до своей ВМТ с противодавлением горящих газов. Дополнительно, на преодоление давления горящих газов, на дополнительный поршень 4 будет воздействовать инерция крутящегося вала двигателя. При достижении своей ВМТ дополнительный поршень 4 меняет вектор движения на противоположный (фиг.9) и также начинает совершать рабочий ход под действием избыточного давления горящих газов. Если энергия заряда гомогенизированной топливно-воздушной смеси исчерпана, а от двигателя необходимо получить большую мощность, то после компрессионного самовоспламенения или по достижении дополнительным поршнем 4 своей ВМТ в общую камеру сгорания с горящими газами, форсункой 9 впрыскивают топливо, которое воспламеняется от них (фиг.8). Основной поршень 2, дойдя до своей НМТ, закончит рабочий ход (фиг.10). В это время открывается выпускной запорный орган 8, и, при движении основного поршня 2 вверх, отработанные газы из общей камеры сгорания выводятся наружу (фиг.11). Остаточное давление горящих газов будет помогать закончить рабочий ход дополнительному поршню 4, который пройдя свою НМТ, будет также задействован для вывода отработанных газов из общей камеры сгорания (фиг.12). Основной поршень 2, закончив выпуск отработанных газов, находится в своей ВМТ. В это время или несколько позже, в зависимости от режима работы двигателя, закрывается выпускной запорный орган 8 (фиг.13). После его закрытия один цикл завершается и начинается следующий.

Вышеизложенное применительно к прогретому двигателю. При заводке холодного двигателя предлагаются следующие варианты.

1) После начала дожатия гомогенизированной топливовоздушной смеси дополнительным поршнем 4 в общую камеру сгорания впрыскивают форсункой 9 микропорцию легковоспламеняемого топлива, например эфира, которому достаточны достигнутые в камере сгорания давление и температура для его воспламенения. Это приведет к еще большему увеличению давления и температуры от горящих газов, что, в свою очередь, приведет к компрессионному самовозгоранию сжатой гомогенизированной топливовоздушной смеси. После необходимого прогрева двигателя впрыск легковоспламеняемого топлива прекращают.

2) После начала дожатия гомогенизированной топливовоздушной смеси дополнительным поршнем 4, в общую камеру сгорания впрыскивают форсункой 9 микропорцию легкоиспаряемого топлива, например бензина, которую принудительно воспламеняют свечой зажигания 10, что приведет к еще большему увеличению давления и температуры от горящих газов, что, в свою очередь, приведет к компрессионному самовозгоранию сжатой гомогенизированной топливовоздушной смеси. Учитывая, что происходит впрыск микропорции топлива, факел впрыска производят в зону нахождения свечи зажигания 10 или непосредственно на его электроды. Можно применить свечи-форсунки со своей микрокамерой сгорания описанные, например, в патентах США №5109817 и 5271365. В этом случае впрыск микропорции топлива можно осуществлять в такте всасывания с использованием топливного насоса низкого давления или карбюратора. В микрокамере получают обогащенную топливно-воздушную смесь, которую в начале такта рабочего хода принудительно воспламеняют. Продукты сгорания с большими значениями давления, температуры и свободными радикалами поступают через каналы в сжатую обедненную топливно-воздушную смесь, которая компрессионно самовоспламеняется в камере сгорания. После необходимого прогрева двигателя впрыск легковоспламеняемого топлива прекращают.

В обоих вышеперечисленных вариантах микропорции другого топлива являются регулируемым детонатором для инициирования компрессионного самовоспламенения гомогенизированной топливовоздушной смеси с основным топливом.

3) Перед всасыванием гомогенизированной топливовоздушной смеси в общую камеру сгорания вместо основного топлива, например дизельного, для создания гомогенизированной топливовоздушной смеси используют другое легкоиспаряемое топливо, например бензин, причем смесь делают обогащенной, которую подают в камеру сгорания, сжимают и принудительно воспламеняют свечой зажигания 10. После необходимого прогрева двигателя для приготовления гомогенизированной топливовоздушной смеси переходят на основное топливо.

В этом варианте основное топливо подменяется другим.

В прогретом двигателе для получения дополнительной мощности, после компрессионного самовоспламенения гомогенизированной топливовоздушной смеси, в камеру сгорания с горящими газами впрыскивают дополнительную порцию топлива.

На фиг.14 показан двигатель с различными длинами ходов поршней, а на фиг.15 показан другой вариант расположения форсунки, свечи, впускного и выпускного клапанов. Соотношение диаметров и длин ходов поршней, а также величина угла запаздывания дополнительного поршня от основного подбирается путем расчетов и экспериментально. Величина угла запаздывания дополнительного поршня от основного может подбираться и регулироваться механизмом сдвига фаз вращений от 0 до 120 угловых градусов, в зависимости от режима работы двигателя. Для упрощения конструкции двигателя основной и дополнительный поршни могут устанавливаться на одном валу с фиксированным смещением фаз вращения валов. Кроме того, момент самовозгорания смеси может дополнительно регулироваться моментом закрытия выпускного запорного органа для задержки в цилиндре части отработанных газов, а также использованием турбонаддува.

Предлагаемый двигатель внутреннего сгорания может работать на различных видах топлива с вышеуказанными возможностями по его регулировке.

Похожие патенты RU2422651C1

название год авторы номер документа
СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2011
  • Габдуллин Ривенер Мусавирович
RU2485334C1
СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ - ИРЕК 2008
  • Габдуллин Ривенер Мусавирович
RU2414619C2
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ - РИВЕНЕР 2004
  • Габдуллин Ривенер Мусавирович
RU2275518C1
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ С ИЗМЕНЯЕМОЙ СТЕПЕНЬЮ СЖАТИЯ 2013
  • Габдуллин Ривенер Мусавирович
RU2530670C1
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ С ИЗМЕНЯЕМОЙ СТЕПЕНЬЮ СЖАТИЯ 2013
  • Габдуллин Ривенер Мусавирович
RU2525372C1
УСТРОЙСТВО УНИВЕРСАЛЬНОГО ЭКОЛОГИЧЕСКИ ЧИСТОГО ПОРШНЕВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2002
  • Ахметов С.А.
  • Ахметов С.С.
RU2220301C2
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 2006
  • Веллев Йенс
  • Элонссон Андерс
RU2403410C2
СКВАЖИННАЯ НАСОСНАЯ УСТАНОВКА 2013
  • Габдуллин Ривенер Мусавирович
RU2519154C1
СКВАЖИННАЯ НАСОСНАЯ УСТАНОВКА 2014
  • Габдуллин Ривенер Мусавирович
RU2549937C1
СКВАЖИННАЯ НАСОСНАЯ УСТАНОВКА 2013
  • Габдуллин Ривенер Мусавирович
RU2519153C1

Иллюстрации к изобретению RU 2 422 651 C1

Реферат патента 2011 года СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение относится к двигателестроению, а именно к поршневым двигателям внутреннего сгорания. Техническим результатом изобретения является упрощение конструкции, возможность контроля и регулирования момента самовоспламенения гомогенизированной топливно-воздушной смеси, снижение удельного расхода топлива и улучшение экологических характеристик двигателя. Способ работы двигателя внутреннего сгорания заключается в подаче заряда в камеры сгорания соединенных друг с другом основного и дополнительного цилиндров с разными диаметрами, в которых размещены поршни, сжатии заряда поршнями в обоих цилиндрах. Поршень дополнительного цилиндра задерживают по фазе вращения вала от поршня основного цилиндра до 120 градусов и, по достижении поршнем основного цилиндра своей верхней мертвой точки, когда большая часть заряда находится в дополнительном цилиндре, дожимают заряд поршнем дополнительного цилиндра. Поршнем основного цилиндра сжимают смесь, не доводя ее до самовоспламенения и подготавливая ее таким образом к последующему быстрому воспламенению, а поршнем дополнительного цилиндра дожимают сжатую гомогенизированную топливно-воздушную смесь, доводят ее температуру и давление в камере сгорания до компрессионного самовоспламенения смеси. 12 з.п. ф-лы, 15 ил.

Формула изобретения RU 2 422 651 C1

1. Способ работы двигателя внутреннего сгорания, заключающийся в подаче заряда в камеры сгорания соединенных друг с другом основного и дополнительного цилиндров с разными диаметрами, в которых размещены поршни, сжатии заряда поршнями в обоих цилиндрах, причем поршень дополнительного цилиндра задерживают по фазе вращения вала от поршня основного цилиндра, и по достижении поршнем основного цилиндра своей верхней мертвой точки дожимают заряд поршнем дополнительного цилиндра, отличающийся тем, что в цилиндры подают гомогенизированную топливовоздушную смесь, сжимают ее двумя поршнями, причем поршнем основного цилиндра сжимают смесь, не доводя ее до самовоспламенения и подготавливая ее таким образом к последующему быстрому воспламенению, а поршнем дополнительного цилиндра дожимают сжатую гомогенизированную топливновоздушную смесь, доводят ее температуру и давление в камере сгорания до компрессионного самовоспламенения смеси.

2. Способ по п.1, отличающийся тем, что объем камеры основного цилиндра над поршнем задают минимально возможным в момент нахождения его в своей верхней мертвой точке.

3. Способ по п.1, отличающийся тем, что после начала дожатия гомогенизированной топливовоздушной смеси поршнем дополнительного цилиндра в камеру сгорания впрыскивают топливо, отличающееся по составу от используемого для приготовления гомогенизированной топливновоздушной смеси, которому достаточны достигнутые давление и температура для его воспламенения.

4. Способ по п.1, отличающийся тем, что после начала дожатия гомогенизированной топливовоздушной смеси поршнем дополнительного цилиндра в камеру сгорания впрыскивают топливо, отличающееся по составу от используемого для приготовления гомогенизированной топливновоздушной смеси, и принудительно воспламеняют его свечой зажигания.

5. Способ по п.4, отличающийся тем, что применяют свечу-форсунку со своей микрокамерой сгорания, в которую в такте всасывания подают топливо, отличающееся по составу от используемого для приготовления гомогенизированной топливновоздушной смеси, и принудительно воспламеняют его в начале рабочего хода.

6. Способ по п.1, отличающийся тем, что в камеру сгорания подают обогащенный гомогенизированный топливовоздушный заряд с использованием топлива, отличающегося по составу от используемого для приготовления гомогенизированной топливновоздушной смеси, который принудительно воспламеняют свечой зажигания.

7. Способ по п.1, отличающийся тем, что после компрессионного самовоспламенения гомогенизированной топливовоздушной смеси в камеру сгорания впрыскивают дополнительную порцию топлива.

8. Способ по п.1, отличающийся тем, что угловую величину отставания вращения вала поршня дополнительного цилиндра от вала поршня основного цилиндра устанавливают в пределах до 120° и регулируют указанную величину путем относительного смещения фаз вращения валов.

9. Способ по п.1, отличающийся тем, что момент самовоспламенения гомогенизированной топливовоздушной смеси дополнительно регулируют путем изменения момента закрытия выпускного запорного органа.

10. Способ по п.1, отличающийся тем, что момент самовоспламенения гомогенизированной топливовоздушной смеси дополнительно регулируют путем изменения степени наддува.

11. Способ по п.1, отличающийся тем, что величину хода поршня дополнительного цилиндра задают отличной от величины хода поршня основного цилиндра.

12. Способ по п.1, отличающийся тем, что основной (основные) и дополнительный (дополнительные) поршни устанавливают на разных несоосных валах, кинематически связывают друг с другом и вращают с одинаковой частотой.

13. Способ по п.1, отличающийся тем, что поршни основного и дополнительного цилиндров устанавливают с фиксированным значением смещения одного поршня относительно другого.

Документы, цитированные в отчете о поиске Патент 2011 года RU2422651C1

Двигатель внутреннего сгорания 1981
  • Касьянов Адольф Васильевич
  • Ибрагимов Сергей Александрович
  • Касьянов Валерий Адольфович
SU1229397A1
СПОСОБ РАБОТЫ АДАПТИРУЕМОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2000
  • Родэ Л.Г.
  • Синайская Е.Г.
RU2170834C1
СПАРЕННЫЙ ДВУХ-ЧЕТЫРЕХТАКТНЫЙ ДВИГАТЕЛЬ КЛИМОВА 1994
  • Климов Сергей Михайлович
RU2078963C1
US 3961607 А, 08.06.1976
Экономайзер 0
  • Каблиц Р.К.
SU94A1
US 3446192 А, 27.05.1969.

RU 2 422 651 C1

Авторы

Габдуллин Ривенер Мусавирович

Даты

2011-06-27Публикация

2010-04-15Подача