СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА КОНТАКТА ТРУБОПРОВОДА С ЗАЩИТНЫМ КОЖУХОМ В СИСТЕМЕ ПЕРЕХОДА МАГИСТРАЛЬНОГО ТРУБОПРОВОДА ЧЕРЕЗ ДОРОГУ Российский патент 2011 года по МПК F17D5/00 

Описание патента на изобретение RU2422718C1

Изобретение относится к трубопроводному транспорту и может быть использовано для диагностики технического состояния переходов магистрального трубопровода (МТ) через автомобильные и железные дороги.

Известны способы аналогичного назначения, заключающиеся в воздействии на стенки МТ и защитного кожуха (ЗК) электромагнитным излучением, приеме прошедшего зондирующего излучения вдоль стенок МТ и ЗК и определении места контакта МТ и ЗК по параметрам принятого зондирующего электромагнитного излучения /патент РФ №2189519, кл. F16L 58/00, 2002. Патент РФ №2317479, кл. F17D 5/00, 2008/.

В первом аналоге между МТ и ЗК подают электрическое напряжение и измеряют электрическое сопротивление между МТ и ЗК.

Во втором аналоге между МТ и ЗК также подают электрическое напряжение, но измеряют градиент электрического напряжения вдоль ЗК.

По измеренным значениям электрического сопротивления или градиента электрического напряжения определяют место электрического контакта МТ и ЗК.

Таким образом любой из приведенных аналогов, например, последний может быть принят за прототип данного способа.

Недостатком прототипа является необходимость использования электромагнитного поля для определения места контакта МТ и ЗК.

В связи с тем что транспортируемая среда (газ, нефть и т.п.) - является горючей и взрывоопасной средой, целесообразно применять другие виды зондирующих полей при определении места электрического (и механического) контакта между МТ и ЗК.

Техническим результатом, получаемым от внедрения изобретения, является решение задачи определения места контакта МТ и ЗК путем использования упругих, например звуковых волн.

Данный технический результат достигают за счет того, что в способе определения места контакта в системе перехода магистрального трубопровода через дорогу, заключающемся в воздействии на стенки трубопровода и защитного кожуха зондирующим полем, приеме прошедшего зондирующего поля вдоль стенок трубопровода и защитного кожуха и определении места контакта трубопровода с защитным кожухом по параметрам принятого поля, в качестве зондирующего поля применяют упругие возмущения, при этом ввод и прием упругих возмущений в стенки трубопровода и защитного кожуха и из стенок трубопровода и защитного кожуха проводят с одной стороны дороги.

В качестве упругих возмущений применяют акустический импульс, а в качестве параметра, по которому определяют место контакта трубопровода с защитным кожухом, используют время распространения зондирующего акустического импульса вдоль стенок трубопровода и защитного кожуха.

В качестве акустического импульса применяют заполненный импульс прямоугольной формы.

В качестве упругих возмущений применяют ударный импульс, а в качестве параметра, по которому определяют место контакта трубопровода с защитным кожухом, используют время распространения зондирующего ударного импульса вдоль стенок трубопровода и защитного кожуха.

Магистральный трубопровод и защитный кожух соединены звукопроводом, расположенным на известном расстоянии от места ввода упругих возмущений.

В качестве звукопровода используют звукопроводную манжету защитного кожуха.

Ввод и прием упругих возмущений проводят в одной точке магистрального трубопровода или защитного кожуха.

Изобретение поясняется чертежом, на котором представлена схема реализации способа определения места контакта 1 МТ 2 с ЗК 3 в системе перехода МТ 2 через железную дорогу 4.

Для реализации способа с одной стороны дороги 4 на край ЗК 3 устанавливают, например, пьезоэлектрический излучатель 5 упругих, например, акустических волн, а на МТ 2 - пьезоэлектрический приемник 6.

Возможны и другие варианты установки пьезоэлектрических пьезопреобразователей 5, 6. Например, излучатель устанавливают на МТ 2, а приемник - на ЗК 3. Или в качестве преобразователей 5, 6 используют один обратимый приемопередающий пьезоэлектрический преобразователь, установленный или на МТ 2 или на ЗК 3.

Вместо акустических волн можно применять упругие волны, возникающие в металле при ударном воздействии на него. В этом случае в качестве приемника импульсного возмущения используют виброметр.

На торце ЗК 3 устанавливают отражатель упругих волн, в качестве которого можно использовать манжету 7.

Способ реализуется следующим образом.

С помощью пьезоэлектрического (или другого) возбудителя 5 упругих волн вдоль стенки ЗК 3 направляют волну в виде импульсного упругого возмущения.

(Иногда его называют звуковой вибрацией)

Импульс, распространяясь вдоль стенки ЗК 3, частично проходит через место контакта 1 МТ 2 - ЗК 3 и затем попадает на приемник 6.

Время t распространения упругого импульса вдоль стенок МТ 2 - ЗК 3 при известной скорости импульса с дает информацию о пространственной координате l места контакта 1.

Учитывая, что часть импульса отражается от места контакта 1, а часть проходит к отражающей манжете 7, возвращаясь также к приемнику 6, пройдя расстояние L, приемник будет регистрировать несколько импульсов, один из которых используется как информативный, а другие как опорные или контрольные.

Для увеличения соотношения сигнал - шум в качестве упругого возмущения целесообразно использовать заполненный акустический импульс прямоугольной формы или акустический импульс прямоугольной формы, или акустический радиоимпульс (звуковую волну, близкую по форме к участку синусоиды).

Если в качестве излучателя и приемника акустического импульса использовать обратимый пьезоэлектрический преобразователь, то для определения места 1 контакта МТ 2 - ЗК 3 используется отраженная от мест контакта 1 звуковая волна.

Похожие патенты RU2422718C1

название год авторы номер документа
Аппаратура для контроля технического состояния перехода магистрального трубопровода и способ ее работы 2018
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
  • Скрынник Татьяна Владимировна
  • Горяев Юрий Анатольевич
  • Седелев Юрий Анатолиевич
  • Самокрутов Андрей Анатольевич
  • Алехин Сергей Геннадьевич
  • Шевалдыкин Виктор Гаврилович
RU2731503C2
АКУСТИЧЕСКИЙ СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПЕРЕХОДА МАГИСТРАЛЬНОГО ТРУБОПРОВОДА ЧЕРЕЗ ЕСТЕСТВЕННЫЕ ИЛИ ИСКУССТВЕННЫЕ ПРЕГРАДЫ 2010
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Горяев Юрий Анатольевич
  • Егурцов Сергей Алексеевич
  • Митрохин Михаил Юрьевич
  • Пиксайкин Роман Владимирович
  • Проскуряков Александр Михайлович
  • Степаненко Александр Иванович
RU2422719C1
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ И ТИПА КОРРОЗИИ 2021
  • Савченков Сергей Викторович
  • Ларцов Сергей Викторович
  • Агиней Руслан Викторович
  • Спиридович Евгений Апполинарьевич
RU2761382C1
СИСТЕМА ПЕРЕХОДА МАГИСТРАЛЬНОГО ТРУБОПРОВОДА ЧЕРЕЗ ДОРОГУ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2010
  • Власов Сергей Викторович
  • Егурцов Сергей Алексеевич
  • Алявдин Григорий Игоревич
  • Предущенко Александр Владимирович
  • Пиксайкин Роман Владимирович
RU2426930C1
Способ акустического контроля трубопровода 2021
  • Мышкин Юрий Владимирович
  • Муравьева Ольга Владимировна
  • Ворончихин Станислав Юрьевич
  • Самокрутов Андрей Анатольевич
RU2758195C1
Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления 2017
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
  • Скрынник Татьяна Владимировна
  • Горяев Юрий Анатольевич
  • Коколев Сергей Анатольевич
  • Середёнок Виктор Аркадьевич
RU2655983C1
Импульсно-акустический способ определения местоположения внутритрубного очистного снаряда в магистральном трубопроводе 2018
  • Вылегжанин Иван Сергеевич
  • Вылегжанина Ольга Викторовна
  • Корнеев Анатолий Николаевич
  • Пушков Александр Александрович
  • Стрекицын Евгений Александрович
  • Халтурин Максим Владимирович
RU2691779C1
СИСТЕМА КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПЕРЕХОДА МАГИСТРАЛЬНОГО ТРУБОПРОВОДА С УСТРОЙСТВОМ КАТОДНОЙ ЗАЩИТЫ ЧЕРЕЗ ДОРОГУ 2009
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Демьянов Алексей Евгеньевич
  • Егурцов Сергей Алексеевич
  • Мелкумян Самвел Эдуардович
  • Пиксайкин Роман Владимирович
  • Степаненко Александр Иванович
RU2433333C2
СПОСОБ МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГЛУБОКОВОДНОГО МАГИСТРАЛЬНОГО ТРУБОПРОВОДА (ВАРИАНТЫ) 2008
  • Власов Сергей Викторович
  • Дудов Александр Николаевич
  • Егурцов Сергей Алексеевич
  • Митрохин Михаил Юрьевич
  • Пиксайкин Роман Владимирович
  • Салюков Вячеслав Васильевич
  • Сеченов Владимир Сергеевич
  • Степаненко Александр Иванович
  • Хороших Андрей Валентинович
RU2392537C1
ИМПУЛЬСНО-АКУСТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ВНУТРИТРУБНОГО СНАРЯДА В МАГИСТРАЛЬНОМ ТРУБОПРОВОДЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Акульшин Михаил Дмитриевич
  • Кандыков Андрей Николаевич
  • Струговец Сергей Анатольевич
  • Хасанов Ильфат Фаритович
  • Шолом Владимир Юрьевич
RU2307978C2

Реферат патента 2011 года СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА КОНТАКТА ТРУБОПРОВОДА С ЗАЩИТНЫМ КОЖУХОМ В СИСТЕМЕ ПЕРЕХОДА МАГИСТРАЛЬНОГО ТРУБОПРОВОДА ЧЕРЕЗ ДОРОГУ

Способ определения места контакта трубопровода с защитным кожухом в системе перехода магистрального трубопровода через дорогу относится к трубопроводному транспорту и может быть использован для диагностики технического состояния переходов магистрального трубопровода, через автомобильные и железные дороги. Способ определения места контакта трубопровода с защитным кожухом в системе перехода магистрального трубопровода через дорогу заключается в воздействии на стенки трубопровода и защитного кожуха зондирующим полем, приеме прошедшего зондирующего поля вдоль стенок трубопровода и защитного кожуха и определении места контакта трубопровода с защитным кожухом по параметрам принятого поля. В качестве зондирующего поля применяют упругие возмущения, при этом ввод и прием упругих возмущений в стенки трубопровода и защитного кожуха, и из стенок трубопровода и защитного кожуха проводят с одной стороны дороги. Технический результат - определение места контакта магистрального трубопровода и защитного кожуха путем использования упругих, например, звуковых волн. 6 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 422 718 C1

1. Способ определения места контакта трубопровода с защитным кожухом в системе перехода магистрального трубопровода через дорогу, заключающийся в воздействии на стенки трубопровода и защитного кожуха зондирующим полем, приеме прошедшего зондирующего поля вдоль стенок трубопровода и защитного кожуха и определении места контакта трубопровода с защитным кожухом по параметрам принятого поля, отличающийся тем, что в качестве зондирующего поля применяют упругие возмущения, при этом ввод и прием упругих возмущений в стенки трубопровода и защитного кожуха и из стенок трубопровода и защитного кожуха проводят с одной стороны дороги.

2. Способ по п.1, отличающийся тем, что в качестве упругих возмущений применяют акустический импульс, а в качестве параметра, по которому определяют место контакта трубопровода с защитным кожухом, используют время распространения зондирующего акустического импульса вдоль стенок трубопровода и защитного кожуха.

3. Способ по п.2, отличающийся тем, что в качестве акустического импульса применяют заполненный импульс прямоугольной формы.

4. Способ по п.1, отличающийся тем, что в качестве упругих возмущений применяют ударный импульс, а в качестве параметра, по которому определяют место контакта трубопровода с защитным кожухом, используют время распространения зондирующего ударного импульса вдоль стенок трубопровода и защитного кожуха.

5. Способ по п.1, отличающийся тем, что магистральный трубопровод и защитный кожух соединены звукопроводом, расположенным на известном расстоянии от места ввода упругих возмущений,

6. Способ по п.5, отличающийся тем, что в качестве звукопровода используют звукопроводную манжету защитного кожуха.

7. Способ по п.1, отличающийся тем, что ввод и прием упругих возмущений проводят в одной точки магистрального трубопровода или защитного кожуха.

Документы, цитированные в отчете о поиске Патент 2011 года RU2422718C1

СПОСОБ ОПРЕДЕЛЕНИЯ МОМЕНТА И МЕСТА УТЕЧКИ ПРОДУКТА ИЗ ТРУБОПРОВОДА С ПОЛОЙ ГЕРМЕТИЧНОЙ ОБОЛОЧКОЙ 2000
  • Бикбулатов И.Х.
  • Соболев А.В.
  • Шулаев Н.С.
RU2184306C2
СПОСОБ ДИАГНОСТИКИ И КОНТРОЛЯ КАЧЕСТВА МАТЕРИАЛА ТРУБОПРОВОДОВ 1999
  • Ермаков Б.С.
  • Солнцев Ю.П.
  • Вологжанина С.А.
  • Фармаковский Б.В.
RU2193771C2
СПОСОБ ВИБРОАКУСТИЧЕСКОГО КОНТРОЛЯ ОДНООСНЫХ КОНСТРУКЦИЙ 1999
  • Белый Д.М.
RU2170426C2
УСТРОЙСТВО для РЕГУЛИРОВАНИЯ РЕЖИМОВ 0
  • И. В. Матвеенко Московский Металлургический Завод Серп Молот
SU400405A1
СПОСОБ ПРОИЗВОДСТВА МЯСНОГО КОНСЕРВИРОВАННОГО ПРОДУКТА "НА ПРИВАЛЕ" 2002
  • Фесик В.А.
  • Дмитренко Н.А.
  • Долгих В.Ф.
RU2242902C2

RU 2 422 718 C1

Авторы

Аксютин Олег Евгеньевич

Власов Сергей Викторович

Горяев Юрий Анатольевич

Егурцов Сергей Алексеевич

Митрохин Михаил Юрьевич

Пиксайкин Роман Владимирович

Проскуряков Александр Михайлович

Степаненко Александр Иванович

Даты

2011-06-27Публикация

2010-02-24Подача