Изобретение используется в нефтяной, газовой промышленности, в частности, предназначено для определения расхода газовой, жидкой углеводородной и водометанольной фаз многофазных потоков.
Известен способ, изложенный в а.с. №866440, включающий разделение потока, включающий отбор незначительной части потока, а также устройство для его осуществления. Известный способ и устройство обладают недостаточной точностью из-за невозможности гомогенизации, а также обеспечения изокинетичности основного и отбираемого потоков.
Известен способ отбора проб газожидкостного потока (пат. РФ №2366813), включающий создание гомогенной среды в зоне отбора проб и изокинетического режима течения основного и отбираемого потоков, при этом создают зону критического течения основного газожидкостного потока и отбор пробы ведут из этой зоны с критической скоростью течения отбираемого потока, при этом критические режимы течений основного и отбираемого потоков создают путем установки на пути штуцеров. Для осуществления известного способа используют устройство для отбора проб газожидкостного потока, содержащее полый корпус с каналами для входа и выхода потока и размещенную в полости корпуса пробоотборную трубку. В корпусе и на входе в пробоотборную трубку установлены штуцеры, при этом проходные сечения штуцеров заданы так, что обеспечивают установление критических режимов течения газожидкостных потоков, а пробоотборная трубка размещена так, что вход в нее находится в зоне критического истечения основного газожидкостного потока.
Недостатком данного способа и устройства является низкая точность из-за отсутствия гомогенизации многофазного потока.
Задачей заявленного изобретения является разработка способа и устройства для повышения качества информации и точности определения расходов и соотношения отдельных фаз многофазных потоков и отбора проб этих фаз для исследования их компонентно-фракционных составов с целью учета количества и оценки качества добываемой продукции индивидуальных скважин и групп скважин.
Технический результат - повышение качества и точности определения расходов и соотношения фаз измеряемых потоков.
Поставленные задача и технический результат достигаются тем, что в способе отбора проб газожидкостной среды, включающем отбор незначительной части исследуемого потока, предварительно сжатого и сформированного, установление равенства линейных скоростей основного и отбираемого потоков путем выравнивания давления основного потока и отбираемого потока, чем обеспечивают изокинетический отбор, при этом все поперечное сечение исследуемого потока разбивают на виртуальные зоны, примерно равные по площади, затем последовательно отбирают пробы в серединах площадей виртуальных зон, относительное время отбора проб в каждой зоне пропорционально относительным площадям виртуальных зон.
Для осуществления заявляемого способа используется устройство для отбора проб газожидкостного потока, содержащее ступенчатый фланец, снабженный в центре сквозным отверстием, в нем установлена верхняя втулка с возможностью осевого перемещения, жестко соединенная нижним торцом с патрубком, снабженным сквозными окнами, на нижнем торце патрубка установлена нижняя втулка, верхняя и нижняя втулки снабжены отверстиями одинакового диаметра, выполненными асимметрично относительно оси устройства, в этих отверстиях размещен капилляр, снабженный на нижнем торце сменным диффузором, на нижнем торце нижней втулки размещен поршень, представляющий собой цилиндрическую втулку, с внутренней поверхностью поршня взаимодействует упор, между упором и поршнем размещено уплотнительное кольцо, на нижнем торце поршня размещена сменная диафрагма, между ступенчатым фланцем и упором установлен цилиндрический кожух, снабженный сквозными окнами, на верхнем торце капилляра размещен указатель, а на верхнем торце ступенчатого фланца размещена шкала.
Заявляемый способ и устройство для его осуществления поясняется чертежом, где изображено устройство для отбора проб газожидкостной среды.
Устройство содержит ступенчатый фланец 1, снабженный сквозным отверстием. В отверстии ступенчатого фланца 1 установлена верхняя втулка 2 с возможностью осевого перемещения. Верхняя втулка 2 жестко соединена с патрубком 3, патрубок 3 снабжен сквозными окнами. На нижнем торце патрубка 3 установлена нижняя втулка 4, снабженная сквозными отверстиями. Верхняя втулка 2 и нижняя втулка 4 снабжены отверстиями одинакового диаметра, выполненные асимметрично относительно оси устройства. В этих отверстиях размещен капилляр 5, снабженный на нижнем торце сменным диффузором 6. На нижнем торце нижней втулки 4 размещен поршень 7, представляющий собой цилиндрическую втулку, с внутренней поверхностью поршня 7 взаимодействует упор 8, а между упором и поршнем размещено уплотнительное кольцо 9. На нижнем торце поршня 7 размещена сменная диафрагма 10. Между ступенчатым фланцем 1 и упором 8 установлен цилиндрический кожух 11, снабженный сквозными окнами. На верхнем торце капилляра 5 размещен указатель 12, а на верхнем торце ступенчатого фланца 1 размещена шкала 13. На боковой поверхности фланца 1 установлен штуцер отбора давления основного потока 14, а торец капилляра 5 снабжен штуцером отбора многофазного потока 15.
Способ осуществляется следующим образом.
Устройство с установленными сменной диафрагмой 10 и сменным диффузором 6 монтируется на лубрикаторной задвижке скважины. При этом все устройство вводится внутрь скважинной арматуры, ступенчатый фланец 1 закрепляется на задвижке шпильками. Скважина запускается в работу, при этом ее газожидкостной поток транзитом проходит через устройство, последовательно проходя через сменную диафрагму 10, нижнюю втулку 4, патрубок 3 и далее через сквозные окна в нем попадает в пространство между патрубком 3 и цилиндрическим кожухом 11. Затем через сквозные окна цилиндрического кожуха 11 газожидкостной поток скважины попадает в пространство арматуры скважины и далее в систему сбора. При работе устройства уплотнительное кольцо 9 уплотняет устройство в скважинной арматуре за счет его деформации поршнем 7, перемещающимся вверх вместе с нижней втулкой 4, патрубком 3 и верхней втулкой 2. У выходного сечения сменной диафрагмы 10 располагается входная часть сменного диффузора 6. Незначительная часть газожидкостного потока скважины, сформированная и проходящая через сменную диафрагму 10, попадает в сменный диффузор 6 и далее через капилляр 5 выводится из устройства через специальную арматуру для дальнейшей обработки. Основной поток продукции скважины.
поступает в систему сбора.
При отборе пробы газожидкостного потока все поперечное сечение потока, сформированное сменной диафрагмой 10, разбивается на виртуальные зоны, примерно равные по площади. Проба потока последовательно отбирается из середины каждой из выделенных виртуальных зон. При этом сменный диффузор 6 устанавливается на середину выделенной зоны путем перемещения его по радиусу сменной диафрагмы 10 поворотом капилляра 5 относительно втулки 2 на строго определенный угол, контролируемый шкалой 13 и указателем 12. Время отбора пробы из каждой из выделенных виртуальных зон сменной диафрагмы 10 пропорционально ее относительной площади. Равенство линейных скоростей основного и отбираемого потоков устанавливается путем выравнивания давления отбираемого потока относительно основного потока специальным устройством, при этом давление основного потока отбирается через штуцер 14. Отобранная часть многофазного потока через штуцер 15 направляется в сепаратор-мерник (не показан).
Были проведены испытания заявляемого устройства, установленного с устьевым сепаратором, который разделял на газовую и жидкостную фазы основной поток продукции скважины. Устройство работало согласно заявляемому способу отбора проб газожидкостной среды. Расходы газовой и жидкой фаз замерялись в сепараторе и в заявляемом устройстве. При этом величины расходов фаз, замеряемых в устьевом сепараторе, отличались от расходов фаз, полученных в заявляемом устройстве, на величину, не превышающую 5%.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ПРИВЕДЕНИЯ РАСХОДОВ ПРОДУКТОВ ДОБЫЧИ ГАЗОКОНДЕНСАТНЫХ СКВАЖИН, ИЗМЕРЯЕМЫХ МНОГОФАЗНЫМ РАСХОДОМЕРОМ, ОТ РАБОЧИХ УСЛОВИЙ К СТАНДАРТНЫМ | 2022 |
|
RU2793153C1 |
Устройство для отбора проб многофазного потока | 2022 |
|
RU2795081C1 |
СПОСОБ ОТБОРА ПРОБ ГАЗОЖИДКОСТНОГО ПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2091579C1 |
УСТРОЙСТВО ДЛЯ УСТАНОВКИ ДИАФРАГМ И СТРУЙНОГО НАСОСА | 2001 |
|
RU2208715C1 |
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ГАЗОВОГО ФАКТОРА НА УСТЬЕ ДЕЙСТВУЮЩЕЙ СКВАЖИНЫ | 2000 |
|
RU2179240C1 |
Ячеечный пробоотборник | 2019 |
|
RU2708736C1 |
Пробоотборник | 2021 |
|
RU2768234C1 |
ПРОБООТБОРНИК ДЛЯ ВЫСОКОВЯЗКОЙ НЕФТИ | 2014 |
|
RU2573658C1 |
УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБ ЖИДКОСТИ ИЗ СКВАЖИНЫ | 2005 |
|
RU2294431C1 |
УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБ ЖИДКОСТИ ИЗ СКВАЖИНЫ | 2005 |
|
RU2289692C1 |
Группа изобретений относится к способу отбора проб газожидкостной среды и устройству для его осуществления. Способ включает отбор части предварительно сжатого и сформированного исследуемого потока и установление равенства линейных скоростей основного и отбираемого потоков путем выравнивания давления основного потока и отбираемого потока, чем обеспечивается изокинетический отбор. При этом все поперечное сечение исследуемого потока разбивают на виртуальные зоны, примерно равные по площади. Затем последовательно отбирают пробы в серединах площадей виртуальных зон. Причем относительное время отбора проб в каждой зоне пропорционально относительным площадям виртуальных зон. Устройство содержит ступенчатый фланец, снабженный в центре сквозным отверстием. Во фланце установлена верхняя втулка с возможностью осевого перемещения, жестко соединенная нижним торцом с патрубком, снабженным сквозными окнами. На нижнем торце патрубка установлена нижняя втулка, причем верхняя и нижняя втулки снабжены отверстиями одинакового диаметра, выполненными ассиметрично относительно оси устройства. В этих отверстиях размещен капилляр, снабженный на нижнем торце сменным диффузором. На нижнем торце нижней втулки размещен поршень, представляющий собой цилиндрическую втулку. С внутренней поверхностью поршня взаимодействует упор, между упором и поршнем размещено уплотнительное кольцо. На нижнем торце поршня размещена сменная диафрагма, а между ступенчатым фланцем и упором установлен цилиндрический кожух, снабженный сквозными окнами. На верхнем торце капилляра размещен указатель, а на верхнем торце ступенчатого фланца размещена шкала. Достигаемый при этом технический результат заключается в повышении качества и точности определения расходов и соотношения фаз измеряемых потоков. 2 н.п. ф-лы, 1 ил.
1. Способ отбора проб газожидкостной среды, включающий отбор части исследуемого потока, предварительно сжатого и сформированного, установление равенства линейных скоростей основного и отбираемого потоков путем выравнивания давления основного потока и отбираемого потока, чем обеспечивают изокинетический отбор, при этом все поперечное сечение исследуемого потока разбивают на виртуальные зоны, примерно равные по площади, затем последовательно отбирают пробы в серединах площадей виртуальных зон, относительное время отбора проб в каждой зоне пропорционально относительным площадям виртуальных зон.
2. Устройство для отбора проб газожидкостного потока, содержащее ступенчатый фланец, снабженный в центре сквозным отверстием, в нем установлена верхняя втулка с возможностью осевого перемещения, жестко соединенная нижним торцом с патрубком, снабженным сквозными окнами, на нижнем торце патрубка установлена нижняя втулка, верхняя и нижняя втулки снабжены отверстиями одинакового диаметра, выполненными ассиметрично относительно оси устройства, в этих отверстиях размещен капилляр, снабженный на нижнем торце сменным диффузором, на нижнем торце нижней втулки размещен поршень, представляющий собой цилиндрическую втулку, с внутренней поверхностью поршня взаимодействует упор, между упором и поршнем размещено уплотнительное кольцо, на нижнем торце поршня размещена сменная диафрагма, между ступенчатым фланцем и упором установлен цилиндрический кожух, снабженный сквозными окнами, на верхнем торце капилляра размещен указатель, а на верхнем торце ступенчатого фланца размещена шкала.
СПОСОБ ОТБОРА ПРОБ ГАЗОЖИДКОСТНОГО ПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2091579C1 |
СПОСОБ ИСПЫТАНИЯ СКВАЖИН, ИССЛЕДОВАНИЯ ПЛАСТОВ В ПРОЦЕССЕ БУРЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2366813C1 |
УСТЬЕВОЙ ПРОБООТБОРНИК ДЛЯ ДОБЫВАЮЩЕЙ СКВАЖИНЫ | 2004 |
|
RU2275503C2 |
US 4508174 A, 02.04.1985 | |||
US 5889217 A, 30.03.1999. |
Авторы
Даты
2011-06-27—Публикация
2010-03-16—Подача