СПОСОБ ОЦЕНКИ ОСТАТОЧНОГО РЕСУРСА ТЕЛЕСКОПИЧЕСКИХ СОЕДИНЕНИЙ ТРАКТОВ ТОПЛИВНЫХ ЯЧЕЕК ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА Российский патент 2011 года по МПК G21C1/12 G21C21/00 

Описание патента на изобретение RU2422925C1

Предлагаемое техническое решение относится к технике эксплуатации ядерных канальных реакторов, касается, в частности, способов оценки остаточного ресурса телескопических соединений трактов и может быть использовано для контроля за состоянием телескопических соединений трактов в период проведения ремонта.

В процессе эксплуатации ядерного уран-графитового реактора в результате радиационно-термических воздействий происходит объемная радиационная усадка графита, которая приводит к значительному сокращению геометрических размеров графитовых блоков и графитовых колонн, в частности высота графитовых колонн может уменьшиться на 250÷270 мм за 45 лет эксплуатации. По результатам контроля, проведенного на энергоблоке №1 Ленинградской АЭС, установлено максимальное уменьшение высоты колонн графитовой кладки реактора на 228 мм за 28 лет эксплуатации. В ядерных уран-графитовых реакторах предусмотрен конструктивный телескопический узел, выполняющий функцию центрирующего элемента ячейки реактора и компенсатора перемещений сборок реактора, связанных с изменением температуры и радиационной усадкой графита. Конструктивно узел выполнен в виде телескопического соединения трактов (ТСТ): верхний тракт жестко связан с нижней плитой, а нижний тракт - с графитовой колонной ячейки реактора. Проектный рабочий ход ТСТ составляет 225 мм. Указанный параметр является одним из основных критериев, определяющих длительность эксплуатации реактора. Радиационная усадка графитовой колонны на величину, соответствующую рабочему ходу ТСТ и более, недопустима. С целью обеспечения безопасной работы ядерного реактора необходимо постоянно контролировать состояние ТСТ. В настоящее время известно несколько способов измерения и оценки остаточной величины ТСТ. Один из них заключается в измерении остаточной величины ТСТ со стороны внутренней поверхности трактов при извлеченной тепловыделяющей сборке (ТВС) через стенку технологического канала с помощью вихретокового преобразователя. (Федеральное агентство по атомной энергии. Общество с ограниченной ответственностью «Пролог», «Методика выполнения измерений геометрических параметров ТК и КСУЗ реакторов РБМК-1000» ШФВИ. ИСТК-5.000.00 МИ, г.Обнинск, 2006 г.) Недостатком способа является то, что для проведения контроля требуется извлечение ТВС с ее последующей загрузкой в ячейку. Известен также способ измерения остаточной величины ТСТ со стороны внутренней поверхности трактов при извлеченном технологическом канале (ТК) с помощью специальной видеоизмерительной системы. (Федеральное агентство по атомной энергии. Общество с ограниченной ответственностью «Инженерно-сервисный центр диагностики оборудования АЭС НИКИЭТ» (ООО ИЦЦ НИКИЭТ), «Методика внутриреакторного контроля наличия и измерения величины телескопического соединения верхнего тракта топливных ячеек и ячеек СУЗ реакторов РБМК-1000 Ленинградской АЭС при использовании системы контроля СКК-1», 840.38 М, Москва, 2005 г.) Недостатком способа является то, что для проведения контроля требуется извлечение канала из реактора, что требует больших временных, трудовых и финансовых затрат, а кроме того, также требуется извлечение ТВС из канала и ее последующая загрузка обратно.

Оценку остаточного ресурса телескопических соединений трактов ядерного канального реактора определяют путем сравнения измеренных значений величин остаточного перекрытия каждого телескопического соединения с предельно допустимой величиной.

Ближайшим аналогом заявляемого технического решения является способ оценки остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора (патент РФ №2380773), оценку остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора осуществляют путем измерения величины остаточного перекрытия каждого телескопического соединения и сравнения с предельно допустимой величиной по результатам измерения расстояния от торца нижнего тракта каждого топливного канала до начала конусного перехода верхнего тракта канала. В качестве измерительного средства используют видеоробот, соединенный с блоком-преобразователем оптического сигнала, имеющим возможность перемещаться по кольцевому экрану бокового отражателя активной зоны реактора. Видеоробот, в период нахождения между рядами трактов, последовательно позиционируют на наружной поверхности трактов в верхней зоне телескопических соединений. Полученное изображение зоны наблюдения переносят на масштабирующий экран монитора и производят измерение на экране расстояния от торца нижнего тракта до начала конусного перехода верхнего тракта, а величины остаточных телескопических перекрытий каждого телескопического соединения трактов определяют по расчетной формуле. Оценку их остаточного ресурса определяют по известной зависимости.

Недостатком способа является трудоемкость проведения измерений на удаленных от видеоробота трактах, связанная с необходимостью ручной фокусировки на узкой видимой части каждого тракта и малым углом обзора в вертикальной и горизонтальной плоскости, что требует большой сосредоточенности и внимательности оператора, и, как следствие, возможность ошибок при определении номеров ячеек и более низкая точность определения ресурса телескопических соединений.

Задача, решаемая изобретением, заключается в снижении трудоемкости, сложности способа, в обеспечении повышения точности определения ресурса телескопических соединений.

Сущность данного технического решения заключается в том, что в способе оценки остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора путем сравнения фактической величины перекрытия каждого телескопического соединения с предельно допустимой величиной по результатам измерения расстояния от торца нижнего тракта каждого топливного канала до начала конусного перехода соответствующего верхнего тракта посредством дистанционно управляемого видеоробота предложено измерения осуществлять видеороботом с магнитной подвеской, перемещающимся по нижней поверхности верхней металлоконструкции реактора между трактами технологических каналов, в момент нахождения его непосредственно у каждого телескопического соединения.

Принципиальным отличием предлагаемого способа от ближайшего аналога является то, что измерения удается проводить в непосредственной близости от измеряемого объекта, что обеспечивает хороший обзор объекта за счет повышения углов обзора в вертикальной и горизонтальной плоскости, высокое качество изображения объекта, передаваемого на преобразователь оптического сигнала, обеспечивается удобство и высокая производительность работы оператора, проводящего измерения. Обеспечивается требуемая точность при измерениях остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора независимо от их места нахождения. Достигается снижение трудоемкости, сложности и повышение точности измерений, так как малогабаритный видеоробот подводится непосредственно к каждому измеряемому объекту, количество которых в одном реакторе - от 1630 до 1680 шт., для чего видеоробот имеет магнитную подвеску и передвигается по нижней поверхности верхней металлоконструкции реактора, между трактами, а измерение производит в момент нахождения на минимальной дистанции от измеряемого объекта. Для того чтобы приблизиться к измеряемым объектам-трактам, представляющим собой вертикальные составные трубы переменного диаметра, возможны в пределах заявляемого способа следующие виды перемещений:

а) по верхней поверхности сборок, составляющих тепловой экран вокруг активной зоны реактора, как это сделано в ближайшем аналоге предлагаемого устройства;

б) по верхней поверхности сборок, на которых стоят нижние тракты;

в) по боковым цилиндрическим поверхностям самих трактов;

г) по нижнему основанию верхней металлоконструкции реактора между технологических каналов.

В ближайшем аналоге возможно перемещение только по варианту а).

Вариант а) позволяет видеороботу приблизиться только к периферийным рядам трактов. Дальние ряды трактов приходится осматривать через промежутки между предыдущими рядами, что ухудшает обзор, затрудняет идентификацию трактов, требует от оператора предельной собранности и внимания. Измерение самых дальних рядов трактов производится на пределе разрешающей способности оптического оборудования с крайне узким сектором обзора объекта, что сказывается на точности измерений этих рядов. Таким образом, точность измерения остаточного ресурса телескопических соединений трактов оказывается разной. Вариант б) крайне затруднен тем, что перепад высот между соседними сборками может достигать 350 мм при том, что расстояние между трактами составляет всего 110 мм. Передвижение будет затрудняться также наличием на сборках крепежных болтов и гаек. Вариант в) возможен только при условии, что видеоробот сможет перемещаться с одного тракта на другой, преодолевая расстояние 110 мм между ними по воздуху. Вариант г) позволяет малогабаритному видеороботу приблизиться к каждому тракту по ровной нижней поверхности верхней металлоконструкции. Этот режим измерений является предпочтительным и обеспечивает одинаковую точность измерений. Применение магнитной подвески обусловлено материалом нижней поверхности верхней металлоконструкции - ферромагнитной сталью. Магнитная подвеска на постоянных магнитах не зависит от внешних источников энергии (например, электроэнергии, сжатого воздуха, вакуума, жидкости и пр.), а следовательно, гарантирует видеоробот от падения вниз в случае непредвиденного отключения подачи энергии. Использование дистанционного управления обусловлено высокими полями ионизирующего излучения в зоне контроля из-за расположения измеряемых объектов вблизи активной зоны ядерного реактора и невозможности использования биологической защиты в пространстве между трактами, расстояние между которыми составляет 110 мм. По этой же причине необходим преобразователь оптического сигнала. Перемещение видеоробота между трактами позволяет производить измерение расстояния от торца нижнего тракта до начала конусного перехода верхнего тракта телескопического соединения с минимальной дистанции с любой стороны тракта, что обеспечивает наибольшую достоверность результатов измерений, наилучшую идентификацию измеряемых трактов и возможность контроля всех трактов активной зоны.

Заявленный способ проиллюстрирован на фиг.1, 2, 3, 4. На фиг.1 представлена общая схема проведения измерений, на фиг.2, 3 представлен видеоробот в рабочем положении около измеряемого объекта, на фиг.4 - измеряемый объект - телескопическое соединение трактов.

В процессе эксплуатации ядерного уран-графитового реактора в результате радиационно-термических воздействий происходит объемная радиационная усадка графита, которая приводит к значительному сокращению геометрических размеров графитовых блоков и графитовых колонн, в частности высота графитовых колонн может уменьшиться на 250÷270 мм за 45 лет эксплуатации. Это приводит к тому, что размер 15 (фиг.3, 4), изначально равный 225 мм, из-за усадки графитовой колонны 17 и опускания связанного с ней нижнего тракта 12, уменьшается до величины 16 и менее и может уменьшиться до полной расстыковки тракта. Расстыковка трактов совершенно недопустима по условиям эксплуатации реактора, поэтому необходимо своевременно произвести ремонт путем вставки между графитовой колонной 17 и нижним трактом 12 специальной проставки, увеличивающей размер 16 до величины, достаточной для выработки реактором запланированного ресурса 45 лет. Из-за разброса изначальных свойств графита и неравномерности воздействия эксплуатационных факторов графитовые колонны усаживаются с различной скоростью, поэтому остаточный ресурс у различных колонн может значительно отличаться. Для обеспечения безопасной эксплуатации реактора, эффективного использования остаточного ресурса, обеспечения планов по генерации электроэнергии необходимо точно определить величину остаточного ресурса зацепления трактов для формирования графика ремонтов. Угол обзора телекамер видеоробота в вертикальной плоскости 20 и горизонтальной плоскости 18 достаточен для полного обзора контролируемой зоны измеряемого объекта.

Остаточная величина перекрытия телескопического соединения (размер 16) определяется по следующей формуле:

где:

А - остаточная величина перекрытия, размер 16, мм;

G - измеренный видеороботом размер 11, мм;

340 - размер 19, величина которого не изменяется в процессе эксплуатации реактора, мм.

Остаточный ресурс телескопического соединения определяется исходя из рассчитанного по формуле (1) размера 16:

где:

Р - остаточный ресурс, лет;

А - рассчитанное по формуле (1) значение размера фактическое 16, мм;

V - скорость усадки графитовой колонны, мм/год;

Amin - предельно допустимая величина размера 11, в настоящее время принята 15 мм.

Таким образом оценку ресурса проводят путем сравнения величины фактического перекрытия с предельно допустимой величиной Amin.

Видеоробот 10 (фиг.1, 2) передвигается по нижнему основанию верхней металлоконструкции 9 между трактами 12. Измеряемой величиной является размер 11 - расстояния от торца нижнего тракта 13 до начала конусного перехода верхнего тракта 14. Управление видеороботом и получение изображений трактов осуществляется с помощью блока-преобразователя оптического сигнала с пультом управления 1, располагающегося на полу 4 центрального зала реактора над верхней биозащитой. Доставка видеоробота в рабочее пространство осуществляется через вертикальную шахту парогазового сброса 6 посредством штанги 5, внутри которой проходит кабель связи 8 видеоробота с пультом управления и преобразователем оптического сигнала. Штанга подается в шахту подъемным краном центрального зала реактора, для чего имеет строповочный рым 2. Для подачи и подмотки кабеля связи на штанге установлен подмоточный барабан 3. Благодаря небольшим размерам видеоробота для его подачи в рабочее пространство не требуется демонтировать пробку-рассекатель 7, видеоробот подается в ее боковые проемы.

Похожие патенты RU2422925C1

название год авторы номер документа
СПОСОБ ОЦЕНКИ ОСТАТОЧНОГО РЕСУРСА ТЕЛЕСКОПИЧЕСКИХ СОЕДИНЕНИЙ ТРАКТОВ ТОПЛИВНЫХ ЯЧЕЕК ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА 2008
  • Черников Олег Георгиевич
  • Лебедев Валерий Иванович
  • Московский Валерий Павлович
  • Кудрявцев Константин Германович
  • Ковалев Сергей Минаевич
  • Шмаков Леонид Васильевич
  • Харахнин Сергей Николаевич
  • Захаржевский Юрий Олегович
  • Петров Анатолий Алексеевич
  • Рогозин Владимир Николаевич
RU2380773C1
СПОСОБ ВОССТАНОВЛЕНИЯ РАБОТОСПОСОБНОСТИ ТЕЛЕСКОПИЧЕСКИХ СОЕДИНЕНИЙ ТРАКТОВ ТОПЛИВНЫХ ЯЧЕЕК ЯДЕРНОГО УРАН-ГРАФИТОВОГО РЕАКТОРА 2008
  • Лебедев Валерий Иванович
  • Черников Олег Георгиевич
  • Шмаков Леонид Васильевич
  • Московский Валерий Павлович
  • Кудрявцев Константин Германович
  • Ковалев Сергей Минаевич
  • Харахнин Сергей Николаевич
  • Рогозин Владимир Николаевич
RU2375770C1
СПОСОБ ВОССТАНОВЛЕНИЯ РАБОТОСПОСОБНОСТИ ТОПЛИВНОЙ ЯЧЕЙКИ ЯДЕРНОГО РЕАКТОРА 2005
  • Балдин Виктор Дмитриевич
  • Бурков Пётр Анатольевич
  • Быстриков Александр Анатольевич
  • Денежкин Валерий Иванович
  • Куранов Владимир Сергеевич
  • Полянских Сергей Александрович
  • Ряхин Вячеслав Михайлович
  • Слепоконь Юрий Иванович
  • Строганов Андрей Алексеевич
  • Черкашов Юрий Михайлович
RU2302671C1
СПОСОБ КОНТРОЛЯ ВЕЛИЧИНЫ ПЕРЕКРЫТИЯ ТЕЛЕСКОПИЧЕСКОГО СОЕДИНЕНИЯ ВЕРХНЕГО ТРАКТА С ФЛАНЦЕМ ГРАФИТОВОЙ КОЛОННЫ КАНАЛЬНОГО ЯДЕРНОГО РЕАКТОРА 2000
  • Крылов С.П.
  • Ахметкереев М.Х.
  • Сидоров И.И.
  • Миськевич А.И.
  • Мавлютов А.А.
  • Филимонцев Ю.Н.
  • Дегтярев В.Г.
  • Тиунов С.Д.
  • Черкашов Ю.М.
  • Балдин В.Д.
RU2184996C1
ТРАКТ ТЕХНОЛОГИЧЕСКОГО КАНАЛА ЯДЕРНОГО УРАН-ГРАФИТОВОГО РЕАКТОРА 2011
  • Черников Олег Георгиевич
  • Перегуда Владимир Иванович
  • Кудрявцев Константин Германович
  • Федосовский Михаил Евгеньевич
  • Ковалев Сергей Минаевич
  • Шмаков Леонид Васильевич
  • Харахнин Сергей Николаевич
  • Быстриков Александр Анатольевич
  • Долганов Сергей Владимирович
  • Александров Николай Гаврилович
  • Лавренов Владимир Сергеевич
RU2449390C1
СПОСОБ ПРОДЛЕНИЯ РЕСУРСА ГРАФИТОВОГО ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА 2012
  • Столяревский Анатолий Яковлевич
RU2501105C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ ЗАЦЕПЛЕНИЯ ТЕЛЕСКОПИЧЕСКОГО СОЕДИНЕНИЯ ВЕРХНЕГО ТРАКТА С ФЛАНЦЕМ ГРАФИТОВОЙ КОЛОННЫ КАНАЛЬНОГО ЯДЕРНОГО РЕАКТОРА 2004
  • Фадеев Александр Николаевич
  • Тиунов Сергей Дмитриевич
RU2273899C2
СПОСОБ ВОССТАНОВЛЕНИЯ РЕСУРСНЫХ ХАРАКТЕРИСТИК ТОПЛИВНЫХ ЯЧЕЕК АКТИВНОЙ ЗОНЫ УРАН-ГРАФИТОВОГО КАНАЛЬНОГО ЭНЕРГЕТИЧЕСКОГО РЕАКТОРА 2013
  • Перегуда Владимир Иванович
  • Черников Олег Георгиевич
  • Кудрявцев Константин Германович
  • Губин Сергей Иванович
  • Ложников Игорь Николаевич
  • Харахнин Сергей Николаевич
  • Шмаков Леонид Васильевич
  • Александров Николай Гаврилович
  • Лавренов Владимир Сергеевич
  • Бугаков Иван Михайлович
  • Слободчиков Алексей Владимирович
  • Ухаров Сергей Григорьевич
  • Федосовский Михаил Евгеньевич
  • Алексанин Сергей Александрович
  • Дунаев Вадим Игоревич
RU2556889C2
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ ПЕРЕКРЫТИЯ ТЕЛЕСКОПИЧЕСКОГО СОЕДИНЕНИЯ ВЕРХНЕГО ТРАКТА С ФЛАНЦЕМ ГРАФИТОВОЙ КОЛОННЫ КАНАЛЬНОГО ЯДЕРНОГО РЕАКТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Богачев Александр Сергеевич
  • Борисенко Владимир Иосифович
  • Борисенко Вячеслав Владимирович
  • Бухарский Алексей Степанович
  • Орлов Алексей Германович
RU2400839C1
Активная зона ядерного реактора с твердым замедлителем 1988
  • Маневский Владимир Николаевич
  • Тутнов Александр Александрович
  • Тутнов Игорь Александрович
SU1597935A1

Иллюстрации к изобретению RU 2 422 925 C1

Реферат патента 2011 года СПОСОБ ОЦЕНКИ ОСТАТОЧНОГО РЕСУРСА ТЕЛЕСКОПИЧЕСКИХ СОЕДИНЕНИЙ ТРАКТОВ ТОПЛИВНЫХ ЯЧЕЕК ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА

Изобретение относится к технике эксплуатации ядерных канальных реакторов, касается, в частности, способов оценки остаточного ресурса телескопических соединений трактов и может быть использовано для контроля за состоянием телескопических соединений трактов в период проведения ремонта. Способ оценки остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора заключается в сравнении фактической величины перекрытия каждого телескопического соединения с предельно допустимой величиной по результатам измерения расстояния от торца нижнего тракта каждого топливного канала до начала конусного перехода соответствующего верхнего тракта посредством дистанционно управляемого видеоробота. Измерения осуществляются видеороботом с магнитной подвеской. Видеоробот перемещается по нижней поверхности верхней металлоконструкции реактора между трактами технологических каналов, в момент нахождения его непосредственно у каждого телескопического соединения. Изобретение направлено на снижении трудоемкости, сложности способа, на обеспечение повышения точности определения ресурса телескопических соединений. 4 ил.

Формула изобретения RU 2 422 925 C1

Способ оценки остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора путем сравнения фактической величины перекрытия каждого телескопического соединения с предельно допустимой величиной по результатам измерения расстояния от торца нижнего тракта каждого топливного канала до начала конусного перехода соответствующего верхнего тракта посредством дистанционно управляемого видеоробота, отличающийся тем, что измерения осуществляют видеороботом с магнитной подвеской, перемещающимся по нижней поверхности верхней металлоконструкции реактора между трактами технологических каналов, в момент нахождения его непосредственно у каждого телескопического соединения.

Документы, цитированные в отчете о поиске Патент 2011 года RU2422925C1

СПОСОБ ОЦЕНКИ ОСТАТОЧНОГО РЕСУРСА ТЕЛЕСКОПИЧЕСКИХ СОЕДИНЕНИЙ ТРАКТОВ ТОПЛИВНЫХ ЯЧЕЕК ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА 2008
  • Черников Олег Георгиевич
  • Лебедев Валерий Иванович
  • Московский Валерий Павлович
  • Кудрявцев Константин Германович
  • Ковалев Сергей Минаевич
  • Шмаков Леонид Васильевич
  • Харахнин Сергей Николаевич
  • Захаржевский Юрий Олегович
  • Петров Анатолий Алексеевич
  • Рогозин Владимир Николаевич
RU2380773C1
СИСТЕМА УПРАВЛЕНИЯ И ЗАЩИТЫ ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА 1992
  • Шмаков Л.В.
  • Лебедев В.И.
  • Гарусов Ю.В.
  • Ковалев С.М.
  • Венкин В.А.
  • Стрижов В.Н.
RU2046407C1
СПОСОБ ДИАГНОСТИКИ ПАРАМЕТРОВ ТЕХНОЛОГИЧЕСКИХ КАНАЛОВ ЯДЕРНЫХ РЕАКТОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Иванов Е.С.
  • Трофимов А.И.
  • Виноградов С.А.
  • Слепоконь Ю.И.
  • Ряхин В.М.
  • Кушковой С.А.
RU2149467C1
СПОСОБ СУШКИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ 2005
  • Лоскутов Геннадий Васильевич
  • Шишкин Владимир Савельевич
  • Шакиржанов Леонид Михайлович
RU2287750C1
ОБЪЕМНАЯ РАДИОЧАСТОТНАЯ КАТУШКА С УЛУЧШЕННЫМ ПРОСТРАНСТВОМ И ДОСТУПОМ ДЛЯ ИСПОЛЬЗОВАНИЯ В СИСТЕМЕ МАГНИТНО-РЕЗОНАНСНЫХ ИССЛЕДОВАНИЙ 2016
  • Лесслер Кристоф
  • Финдекле Кристиан
RU2701785C2

RU 2 422 925 C1

Авторы

Черников Олег Георгиевич

Лебедев Валерий Иванович

Кудрявцев Константин Германович

Перегуда Владимир Иванович

Ковалев Сергей Минаевич

Шмаков Леонид Васильевич

Захаржевский Юрий Олегович

Петров Анатолий Алексеевич

Шевцов Игорь Александрович

Балдин Виктор Дмитриевич

Даты

2011-06-27Публикация

2010-05-26Подача