СПОСОБ ОБРАБОТКИ КАРБОНАТНЫХ И КАРБОНАТСОДЕРЖАЩИХ ПЛАСТОВ (ВАРИАНТЫ) Российский патент 2011 года по МПК E21B43/22 

Описание патента на изобретение RU2425209C2

Изобретение относится к нефтегазодобывающей промышленности, а именно к добыче нефти и газа из неоднородных обводняющихся пластов на любой стадии разработки газовых и нефтяных месторождений, в частности к способам с применением реагентов, кислот и гелеобразующих составов на основе силикатов.

Изобретение может быть использовано для повышения эффективности обработки призабойной зоны карбонатного и карбонатсодержащего пласта за счет более качественной изоляции обводнившихся порово-трещинных транспортных каналов и увеличения глубины проникновения кислоты в пласт.

Солянокислотные обработки (СКО) являются основным способом воздействия на карбонатные пласты. Основными недостатками солянокислотных обработок являются уменьшение эффективности с ростом кратности воздействия и низкая эффективность или отсутствие положительного эффекта в обводненных пластах. Эффективность СКО можно увеличить за счет увеличения глубины проникновения обрабатывающего состава в пласт с сохранением его растворяющих и разъедающих свойств, что, в свою очередь, достигается уменьшением скорости растворения породы в кислоте и использованием соляной кислоты в комбинации с водоизолирующими композициями.

Известен способ обработки карбонатного пласта, по которому в пласт закачивают обратную эмульсию, затем чередующиеся между собой порции кислоты и гидрофобизирующего агента. В качестве гидрофобизирующего состава в пласт закачивают 20%-ный углеводородный раствор смыленного таллового пека [А.С. СССР №1624134, МКИ Е21В 43/27, опубл. 30.01.1991]. Этот способ имеет недостаточную эффективность, кислота реагирует с карбонатами довольно быстро и глубина обработки недостаточна, продукты реакции извлекаются с сильным осложнением из-за эмульгирования, снижение обводнения продукции скважины при такой обработке незначительно.

Известен способ обработки пластов, в котором используется состав, включающий соляную кислоту и жидкое стекло [В.И.Кудинов, Б.М.Сучков. "Методы повышения производительности скважин", Самара: Кн. изд-во, 1996, с.95]. Основным недостатком его является невысокая эффективность, связанная с малой глубиной проникновения кислотного состава в пласт из-за большой скорости реакции с карбонатной породой.

Таким образом, для повышения эффективности обработки важно доставить кислоту не прореагировавшей как можно глубже в пласт. Известно, что замедлителями скорости реакции растворения карбоната в соляной кислоте являются алюмосиликаты (нефелин, сиенитовый концентрат или цеолит) и лигносульфонаты (сухие или жидкие лигносульфонаты, лигнотин и др.). Известны способы обработки пластов с использованием кислотного состава, снижающего скорость растворения карбоната в 10-50 раз (в зависимости от глубины реакции) [Лозин Е.В., Хлебников В.Н. Применение коллоидных реагентов для повышения нефтеотдачи. - Уфа, изд. БашНИПИнефть, 2003]. Использование высокоминерализованной воды (плотностью более 1100 кг/м3) или ее смеси с метанолом позволяет использовать кислотный состав в осенне-зимний период и дополнительно замедлять скорость растворения карбонатов.

Известен способ регулирования проницаемости неоднородного пласта, включающий двухстадийную закачку в пласт через скважину гелеобразующего кислотного раствора, продавку его в пласт водой и остановку на время гелеобразования, с использованием гелеобразующего раствора в виде кислотного раствора алюмосиликата или жидкого стекла, причем на первой стадии закачивают указанный гелеобразующий раствор с концентрацией выше порога гелеобразования, а на второй стадии закачивают тот же раствор с концентрацией ниже порога гелеобразования [патент РФ №2184841, Е21В 43/22, опубл. 10.07.2002].

Наиболее близким по сущности и достигаемому результату является способ регулирования проницаемости неоднородного пласта, включающий закачку в пласт через скважину гелеобразующего кислотного раствора, продавку его в пласт водой и остановку на время гелеобразования, с использованием гелеобразующего раствора, содержащего, мас.%: алюмосиликат (в пересчете на сухое вещество) 0,5-10,0, лигносульфонат (в пересчете на сухое вещество) 0,5-10,0, соляная кислота - остальное, причем алюмосиликаты могут быть использованы природные или синтетические, в том числе и отходы производства цеолитов - цеолитные шламы, соляную кислоту готовят смешением концентрированной кислоты с пресной или минерализованной водой [патент РФ №2194157, Е21В 43/22, опубл. 10.12.2002].

Эти способы недостаточно эффективны, так как снижение обводненности продукции скважины невелико из-за недостаточной плотности образующегося геля и недостаточной глубины проникновения активной кислоты, есть технологические затруднения при приготовлении рабочих растворов на скважине.

Целью изобретения является повышение эффективности обработки трещиновато-пористых карбонатных и карбонатсодержащих пластов и расширение температурных границ применения способа за счет более качественной изоляции обводнившихся порово-трещинных транспортных каналов, увеличения глубины проникновения кислоты в пласт и охвата призабойной зоны пласта воздействием.

Поставленная цель достигается тем, что в способе обработки карбонатных и карбонатсодержащих пластов, включающем закачку в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат, соляную кислоту и воду, что в качестве указанного отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У, закачку осуществляют в две стадии с продавкой в пласт водой и остановкой на время гелеобразования, используя на первой стадии указанный раствор при следующем соотношении его компонентов, мас.%:

Указанный отход 50,0-60,0 Лигносульфонат 0,5-5,0 Соляная кислота 7,0-12,0 Вода остальное

а на второй стадии - указанный раствор при следующем соотношении его компонентов, мас.%:

Указанный отход 20,0-40,0 Лигносульфонат 0,5-5,0 Соляная кислота 10,0-15,0 Вода остальное

Причем смешивание раствора соляной кислоты и указанного отхода с добавкой лигносульфоната осуществляют на устье путем закачки через волновой смеситель, установленный на устье скважины, башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот гидравлический волновой генератор, используемая для продавки вода дополнительно содержит метанол при следующем соотношении компонентов, мас.%:

Метанол 50-60 Вода минерализованная, ρ=1,1-1,24 г/см3 остальное

используемый на втором этапе указанный раствор дополнительно содержит 20-32 мас.% метанола.

Поставленная цель также достигается тем, что по другому варианту в способе обработки карбонатных и карбонатсодержащих пластов, включающем закачку в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат, соляную кислоту и воду, в качестве указанного отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У при следующем соотношении компонентов, мас.%:

Указанный отход 20,0-40,0 Лигносульфонат 0,5-5,0 Соляная кислота 10,0-15,0 Вода остальное

и предварительно проводят последовательную закачку 7-12%-ного раствора соляной кислоты, первого буфера пресной воды, жидкого отхода производства синтетического цеолита NaX и/или NaA+NaA-У, содержащего 2-5% лигносульфоната, второго буфера пресной воды, 7-12%-ного раствора соляной кислоты и продавку водой в объеме насосно-компрессорных труб и устьевой обвязки оборудования.

Причем при больших объемах закачиваемых растворов выполняют 2-4 цикла последовательных закачек в указанной последовательности с продавкой после последней части раствора соляной кислоты, башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот гидравлический волновой генератор, используемая для продавки вода дополнительно содержит метанол при следующем соотношении компонентов, мас.%:

Метанол 50-60 Вода минерализованная, ρ=1,1-1,24 г/см3 остальное

указанный раствор дополнительно содержит 20-32 мас.% метанола.

Отличие заявляемого способа от известного заключается в том, что используется кислотный гелеобразующий раствор в виде кислотного раствора силиката натрия и сульфата натрия, с остаточным содержанием алюмосиликатов, являющегося жидким отходом производства синтетического цеолита NaX (по ТУ 38.10281-88) и/или NaA и NaA-У (по ТУ 2163-003-05766557-97), содержащим систему Na2O, Al2O3, SiO2, H2O, в этот раствор сделана добавка поверхностно-активного вещества лигносульфоната, причем на первой стадии закачивают кислотный гелеобразующий раствор с концентрацией силиката натрия, обеспечивающей создание более плотного и менее проницаемого геля, а на второй стадии закачивают тот же раствор с концентрацией силиката натрия, замедляющей процесс растворения карбонатов соляной кислотой, кислотный гелеобразующий раствор содержит дополнительно лигносульфонат, для упрочнения геля и усиления сцепления его с поверхностью порово-трещинного пространства, а на второй стадии лигносульфонат участвует в замедлении реакции кислоты с карбонатами, дополнительно обеспечивая более глубокое проникновение в пласт активной кислоты. Снижение концентрации химического реагента в последующей оторочке и использование различия физико-химических свойств растворов гелеобразователя при концентрациях гелеобразователя выше и ниже порога гелеобразования известно (патент РФ 2184841), однако заявляемая совокупность существенных признаков, а именно использование в качестве гелеобразователя и далее для замедления реакции кислоты нового компонента - жидкого отхода производства синтетического цеолита NaX (по ТУ 38.10281-88) и/или NaA и NaA-У (по ТУ 2163-003-05766557-97), ранее не использовавшегося, и добавление лигносульфоната позволяет одним и тем же химическим реагентам на первом этапе более значительно уменьшать проницаемость высокопроницаемых зон и пропластков, а на втором этапе - повышать проницаемость низко- и среднепроницаемых, не охваченных фильтрацией, участков неоднородного пласта. Кроме того, предложенная последовательность операций в сочетании с применяемыми веществами ранее не использовалась. На основании вышеизложенного можно сделать вывод о соответствии заявляемого способа критерию «изобретательский уровень».

Для приготовления замедленной кислотной и гелеобразующей композиции использовались:

- жидкий отход производства синтетического цеолита NaX (по ТУ 38.10281-88) и/или (NaA и NaA-У) (по ТУ 2163-003-05766557-97), содержащий систему Na2O, Al2O3, SiO2, H2O, представляющий собой раствор с содержанием силиката натрия 6,5-12,0 мас.%, сульфата натрия 3,5-8,5 мас.%, алюмосиликата натрия в виде примесей до 1,5 мас.%;

- поверхностно-активное вещество - лигносульфонат;

- соляная кислота, выпускаемая по ТУ 212204200203306-98.

Были проведены лабораторные эксперименты для определения необходимых концентраций компонентов обрабатывающих растворов на разных стадиях технологического процесса обработки пласта. При добавлении силиката натрия в состав раствора соляной кислоты получаются два типа растворов (табл.1) - замедленная соляная кислота (с концентрацией силиката натрия 4% и менее, опыты №№1-11) и гелеобразующий состав (с концентрацией силиката натрия 5% и более, опыты №№12-22).

Таблица 1 Влияние содержания силиката натрия (СН) и соляной кислоты в растворе на процесс гелеобразования (избыток карбоната - не менее 50%, t=20°C) № опыта Концентрация, % Результаты № опыта Концентрация, % Результаты СН HCl СН HCl 1 2 10 Взвесь 12 6 6 Часть объема - взвесь, часть - гель 2 3 10 Взвесь 13 6 10 Плотный гель 3 4 10 Взвесь 14 7 10 Плотный гель 4 5 10 Взвесь 15 8 10 Плотный гель 5 2 12 Взвесь 16 9 10 Плотный гель 6 3 15 Взвесь 17 12 10 Плотный гель 7 4 12 Взвесь 18 7 7 Плотный гель 8 5 15 Взвесь 19 8 8 Плотный гель 9 3 3 Взвесь 20 9 9 Плотный гель 10 4 4 Взвесь 21 10 10 Плотный гель 11 5 5 Часть объема - взвесь, часть - гель 22 12 12 Плотный гель

Лигносульфонат наряду с силикатами замедляет реакцию соляной кислоты с карбонатной породой. Поэтому применение лигносульфоната совместно с силикатом позволит увеличить глубину, а значит и эффективность обработки. Механизм совместного замедляющего действия на реакцию соляной кислоты с карбонатами силиката и лигносульфоната состоит в следующем. Коллоидная и полимерная природа растворов силикатов и лигносульфонатов в соляной кислоте приводит к тому, что уменьшается скорость диффузии ионов водорода в растворе. В результате взаимодействия кислотного раствора силиката и лигносульфоната с карбонатами на поверхности пор и трещин образуется защитный гелеобразный слой, что сопровождается снижением скорости реакции кислоты с карбонатной или карбонатсодержащей породой. Лигносульфонат увеличивает адгезию геля на поверхности порово-трещинного пространства и плотность слоя геля на этой поверхности.

Добавка лигносульфоната повышает прочность образующегося геля и соответственно его водоизолирующие свойства. Лигносульфонат, обладая свойствами ПАВ, увеличивает прочность сцепления образующегося геля с поверхностью порово-трещинного пространства. Наличие лигносульфоната повышает вязкость гелеобразующего раствора, и он поступает в наиболее крупные трещины и поры, что придает способу селективность воздействия. Наличие поверхностно-активного вещества в кислотном растворе обеспечивает снижение поверхностного натяжения на границе раздела фал и более глубокое проникновение кислотного раствора в пласт.

Добавление метанола в замедленный кислотный раствор и продавочный раствор с одной стороны понижает температуру замерзания растворов, что расширяет границы применимости способа в сторону более низких отрицательных температур, с другой стороны наличие метанола в кислотном растворе дополнительно замедляет реакцию кислоты с карбонатами, увеличивая глубину кислотной обработки, и при этом облегчает очистку призабойной зоны от продуктов реакции при вызове притока и отработке скважины на факел, кроме того, метанол является ингибитором гидратообразования. То есть применение метанола в данном случае дает комплексный положительный эффект.

Испытания способа обработки карбонатных и карбонатсодержащих пластов проводились на установке УИПК-1М. Модель пласта была представлена образцами керна с размером 030 мм, длиной 1=40 мм. Результаты опытов с кислотным гелеобразующим составом на основе соляной кислоты и отхода производства синтетического цеолита NaX и NaA, содержащим силикат натрия, и дополнительно лигносульфонат представлены в табл.2.

Таблица 2 Оценка степени водоизоляции при использовании в способе обработки карбонатных и карбонатсодержащих пластов состава, содержащего соляную кислоту, отход производства синтетического цеолита NaX и NaA и лигносульфонат. № опыта Состав раствора Проницаемость керна до обработки, по воде, 10-3 мкм2 Градиент давления при определении проницаемости, МПа/м После обработки Проницаемость по воде, 10-3 мкм2/кратность уменьшения Градиент давления, при котором возникла фильтрация, МПа/м /кратность возрастания градиента давления 1 №13 табл.1 113 1.8 4,9/23,1 2,8/1,5 2 №16 табл.1 119 1.8 5,7/20,9 2,9/1,6 3 №13 табл.1+0,5% лигносульфонат 137 1,8 4,6/29,8 3,6/2,0 4 №16 табл.1+0,5% лигносульфонат 121 1,8 4,0/30,2 3,8/2,1 5 №13 табл.1+2,0% лигносульфонат 194 1,8 6,2/31,3 3,7/2,1 6 №16 табл.1+2,0% лигносульфонат 197 1,8 6,1/32,3 3,7/2,1 7 №13 табл.1+5,0% лигносульфонат 312 1,8 9,4/33,2 4,0/2,2 8 №16 табл.1+5,0% лигносульфонат 328 1,8 9,7/33,8 4,2/2,3 9 Прототип (нефелин 8%+HCl 8%) 189 1,8 10,8/17,5 2,5/1,4 10 Прототип (нефелин 8%+HCl 8%) 123 1,8 9,2/13,4 2,0/1,1

По данным табл.1 и 2 видно, что в зависимости от концентрации компонентов состав, предлагаемый для использования в способе обработки карбонатных и карбонатсодержащих пластов, проявляет свойства гелеобразующего состава, способного изолировать приток воды, или замедленного кислотного состава, что позволяет комплексно решить задачу водоизоляции и интенсификации притока нефти и газа в скважину. А также видно, что водоизоляционные возможности предлагаемого способа выше, чем у прототипа (табл.2).

По физико-химическим показателям натрийсиликатсодержащий состав соответствует требованиям и значениям, приведенным в таблице 3.

Таблица 3 Наименование показателя Значение Метод испытания 1. Внешний вид Слабомутная жидкость от коричневого до темно-коричневого цвета визуально 2. Плотность при 20°С, кг/м3 1,0-1,25 ГОСТ 18995.7-73 3. Массовая концентрация сульфата натрия, г/дм3, в пределах 35-85 ГОСТ 27025-86 4. Массовая концентрация оксида кремния (IV), г/дм3 40-80 ГОСТ 27025-86 5. Массовая концентрация оксида натрия, г/дм3, в пределах 25-40 ГОСТ 27025-86

Закачка составляющих обрабатывающего раствора (раствора соляной кислоты и жидкого отхода производства синтетического цеолита NaX, и/или NaA и NaA-У с добавкой лигносульфоната) через волновой смеситель, установленный на устье скважины [Ганиев Р.Ф., Украинский Л.Е., Андреев В.Е., Котенев Ю.А. Проблемы и перспективы волновой технологии многофазных систем в нефтяной и газовой промышленности. - СПб.: ООО «Недра», 2008. - 214 с. С.83, 176-177] позволяет достигнуть высокой степени перемешивания компонентов и однородности при большой скорости закачки, что позволяет сократить время подготовительных работ и достигнуть большей эффективности обработки. При этом волновое воздействие по существующему гидравлическому каналу (колонна насосно-компрессорных труб) будет передаваться на забой скважины и на призабойную зону пласта, что, в свою очередь, также положительно сказывается на эффективности обработки [Ганиев Р.Ф., Украинский Л.Е., Андреев В.Е., Котенев Ю.А. Проблемы и перспективы волновой технологии многофазных систем в нефтяной и газовой промышленности. - СПб.: ООО «Недра», 2008. - 214 с.].

Когда башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот волновой генератор, достигается высокая степень перемешивания компонентов и однородности получаемого в призабойной зоне раствора, естественно это позволяет сократить время подготовительных работ. Однако параллельно с этим происходит волновое воздействие на призабойную зону пласта, позволяющее более тщательно заполнить порово-трещинное пространство породы гелеобразующим составом и создать более плотный и непроницаемый гелевый экран (барьер), а на стадии кислотного воздействия за счет волновых эффектов происходит лучшее проникновение кислотного раствора в пласт, и тогда обработке подвергается большая зона вокруг скважины, которая ранее не была охвачена фильтрацией. Названные процессы кратно увеличивают эффективность водоизоляции и кислотной обработки для интенсификации притока нефти и газа [Ганиев Р.Ф., Украинский Л.Е., Андреев В.Е., Котенев Ю.А. Проблемы и перспективы волновой технологии многофазных систем в нефтяной и газовой промышленности. - СПб.: ООО «Недра», 2008. - 214 с.].

Пример 1. Для обработки выбрана добывающая нефтяная скважина, эксплуатирующая обводненный пласт толщиной 15 м, кровля пласта находится на глубине 2020 м. Пористость пласта m=0,2. Скважина обсажена эксплуатационной колонной 146 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 73 мм до глубины 2000 м. Пластовое давление 20,5 МПа, пластовая температура 78°С. Определенная в начале работ приемистость пласта равна 280 м3/сут при 12 МПа.

Приготовили первый рабочий раствор: насосным агрегатом ЦА-320 в технологическую емкость закачали 9 м3 жидкого отхода производства синтетического цеолита NaX, кислотным агрегатом СИН-32 закачали 6 м3 23% раствора соляной кислоты с одновременным перемешиванием по круговой схеме при помощи насосного агрегата ЦА-320, добавили 250 кг лигносульфоната и перемешивали в течение 30 мин. по круговой схеме при помощи насосного агрегата ЦА-320.

Обвязали устьевую арматуру с насосным агрегатом ЦА-320. При открытом затрубном пространстве (соединено в циркуляционную емкость) последовательно закачали: 2 м3 пресной (технической) воды, 5 м3 приготовленного первого рабочего раствора состава, мас.%: жидкий отход производства синтетического цеолита NaX 60,0, лигносульфонат 1.7, соляная кислота 9,2, вода 29,1; закрыли затрубное пространство и последовательно закачали: 10 м3 указанного приготовленного первого рабочего раствора, 7 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 48 часов, для гелеобразования.

Приготовили второй рабочий раствор (раствор замедленной кислоты): насосным агрегатом ЦА-320 в технологическую емкость закачали 6 м3 жидкого отхода производства синтетического цеолита NaX и 9,1 м3 пресной воды, кислотным агрегатом СИН-32 закачали 14,9 м3 23% раствора соляной кислоты с одновременным перемешиванием по круговой схеме при помощи насосного агрегата ЦА-320, добавили 200 кг лигносульфоната и перемешивали в течение 30 минут по круговой схеме при помощи насосного агрегата ЦА-320.

Обвязали устьевую арматуру с насосным агрегатом ЦА-320. Спрессовали нагнетательную линию давлением 18 МПа. При открытом затрубном пространстве (соединено в циркуляционную емкость) последовательно закачали: 6 м3 приготовленного второго рабочего раствора состава, мас.%: жидкий отход производства синтетического цеолита NaX 20,0, лигносульфонат 0,7, соляная кислота 13,7, вода 65,6: закрыли затрубное пространство и последовательно закачали: 24 м3 приготовленного указанного второго рабочего раствора, 6,7 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 2 часа, для реакции.

Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷12 мм в течение 36 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 23%.

Пример 2. Для обработки выбрана добывающая нефтяная скважина, эксплуатирующая обводненный пласт толщиной 18 м, кровля пласта находится на глубине 1980 м. Пористость пласта m=0,2. Скважина обсажена эксплуатационной колонной 146 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 73 мм до глубины 1990 м. Пластовое давление 20 МПа, пластовая температура 78°С. Определенная в начале работ приемистость пласта равна 300 м3/сут при 12 МПа.

Установили на устье и присоединили к трубному пространству волновой смеситель, к нему присоединили две напорные линии для подачи реагентов и обвязали первую с насосным агрегатом ЦА-320, вторую с кислотным агрегатом СИН-32. Приготовили раствор жидкого отхода производства синтетического цеолита NaA и NaA-У с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 24 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У (соотношении 1:1), добавили 800 кг лигносульфоната и перемешивали в течение 15 минут по круговой схеме при помощи насосного агрегата ЦА-320. Далее через волновой смеситель в скважину одновременно закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 2,4 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и 3,6 м3 производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); закрыли затрубное пространство и одновременно закачали 13,6 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и 20,4 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); затем продавили 6,5 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 36 часов для гелеобразования.

Приготовили раствор жидкого отхода производства синтетического цеолита NaA и NaA-У (в соотношении 1:1) с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 15 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У и 8 м3 пресной воды, добавили 900 кг лигносульфоната и перемешивали в течение 15 мин по круговой схеме при помощи насосного агрегата ЦА-320. Далее через волновой смеситель в скважину одновременно закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 3,7 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и 2,3 м3 раствора жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); закрыли затрубное пространство и одновременно закачали 33,3 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и 20,1 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); затем продавили 6,5 м3 технической воды.

Устье скважины загерметизировали и оставили скважину в покое на 1,5 ч для реакции.

Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷12 мм в течение 36 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 29%.

Пример 3. Для обработки выбрана добывающая газовая скважина, эксплуатирующая обводненный пласт толщиной 19 м, кровля пласта находится на глубине 2080 м. Пористость пласта m=0,24. Скважина обсажена эксплуатационной колонной 168 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 73 мм до глубины 2060 м. Пластовое давление 21,2 МПа, пластовая температура 79°С. Определенная в начале работ приемистость пласта равна 380 м3/сут при 12,3 МПа.

Присоединили к трубному пространству через тройник две напорные линии для подачи реагентов и обвязали первую с насосным агрегатом ЦА-320, вторую с кислотным агрегатом СИН-32. Приготовили водометанольный раствор для продавки, для чего в емкость закачали 3 м3 (56 мас.%) минерализованной воды с р=1,14 г/см3 и 3,5 м3 (44 мас.%) метанола, перемешали в течение 5 минут. Приготовили раствор жидкого отхода производства синтетического цеолита NaX+NaA (в соотношении 1:1) с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 20 м3 жидкого отхода производства синтетического цеолита NaA, добавили 1 тонну лигносульфоната с одновременным перемешиванием и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320. Одновременно с этим приготовили 20 м 12% раствора соляной кислоты, для чего во вторую технологическую емкость закачали 9,9 м3 пресной воды и агрегатом СИН-32 закачали 10,1 м3 23% раствора соляной кислоты (товарная соляная кислота) и перемешивали в течение 10 мин по круговой схеме при помощи кислотного агрегата СИН-32. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 6,2 м3 12% соляной кислоты (кислотным агрегатом СИН-32), закрыли затрубное пространство и закачали последовательно: 3,8 м3 12% соляной кислоты (12 мас.% кислоты и 88 мас.% воды); 0,5 м3 пресной воды; 20 м3 (25 мас.%) жидкого отхода производства синтетического цеолита NaX с добавкой 5 мас.% лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 10 м3 12% (…12 мас.% кислоты и …88 мас.% воды) соляной кислоты (кислотным агрегатом СИН-32) и 6,5 м3 водометанольного раствора (насосным агрегатом ЦА-320). Устье скважины загерметизировали и оставили скважину в покое на 10 ч для гелеобразования.

Приготовили 60 м3 замедленного кислотного раствора, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 18 м3 жидкого отхода производства синтетического цеолита NaX и 5 м3 пресной воды; в эту же технологическую емкость закачали 37 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320; затем добавили 800 кг лигносульфоната и перемешивали в течение 15 мин по круговой схеме при помощи насосного агрегата ЦА-320 (мас.%: 30 отхода, 14,2… кислоты, …54,5 воды и 1,3… лигносульфоната). Приготовили водометанольный раствор для продавки, для чего в емкость закачали 3 м3 (…56 мас.%) минерализованной воды с р=1,14 г/см3 и 3,5 м3 (…44 мас.%) метанола, перемешали в течение 5 мин. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 6,2 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32); закрыли затрубное пространство и закачали 53,8 м замедленного кислотного раствора (кислотным агрегатом СИН-32), затем продавили 6,5 м3 водометанольного раствора. Устье скважины загерметизировали и оставили скважину в покое на 2 часа для реакции.

Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷14 мм в течение 60 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 33,4%.

Пример 4. Для обработки выбрана добывающая нефтяная скважина, эксплуатирующая обводненный пласт толщиной 16 м, кровля пласта находится на глубине 2120 м. Пористость пласта m=0,21. Скважина обсажена эксплуатационной колонной 146 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 73 мм до глубины 2128 м, башмак НКТ оборудован волновым генератором типа СГГК (конструкция НЦ НВМТ РАН). Пластовое давление 21 МПа, пластовая температура 78°С. Определенная в начале работ приемистость пласта равна 240 м3/сут при 11,8 МПа.

Приготовили первый рабочий раствор: насосным агрегатом ЦА-320 в технологическую емкость закачали 10 м3 жидкого отхода производства синтетического цеолита NaX+NaA+NaA-Y, кислотным агрегатом СИН-32 закачали 6 м3 23% раствора соляной кислоты с одновременным перемешиванием по круговой схеме при помощи насосного агрегата ЦА-320, добавили 640 кг лигносульфоната и перемешивали в течение 30 мин по круговой схеме при помощи насосного агрегата ЦА-320 (мас.%: 60,0 отхода, …10,0 кислоты, 26,0… воды и …4,0 лигносульфоната).

Обвязали устьевую арматуру с насосным агрегатом ЦА-320. При открытом затрубном пространстве (соединено в циркуляционную емкость) последовательно закачали: 2 м3 пресной (технической) воды, 6,4 м3 приготовленного первого рабочего раствора; закрыли затрубное пространство и последовательно закачали: 9,6 м3 приготовленного первого рабочего раствора, 7 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 48 ч для гелеобразования.

Приготовили второй рабочий раствор (раствор замедленной кислоты): насосным агрегатом ЦА-320 в технологическую емкость закачали 12,8 м3 жидкого отхода производства синтетического цеолита NaX+NaA+NaA-Y и 1,9 м3 пресной воды, кислотным агрегатом СИН-32 закачали 17,3 м3 23% раствора соляной кислоты с одновременным перемешиванием по круговой схеме при помощи насосного агрегата ЦА-320, добавили 200 кг лигносульфоната и перемешивали в течение 30 мин по круговой схеме при помощи насосного агрегата ЦА-320 (мас.%: 40,0… отхода, …12,4 кислоты, …47,0 воды и …0,6 лигносульфоната).

Обвязали устьевую арматуру с насосным агрегатом ЦА-320. При открытом затрубном пространстве (соединено в циркуляционную емкость) последовательно закачали: 6,4 м3 приготовленного раствора; закрыли затрубное пространство и последовательно закачали: 24 м3 приготовленного второго рабочего раствора, 7 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 2 часа для реакции.

Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷12 мм в течение 40 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 30,2%.

Пример 5. Для обработки выбрана добывающая газовая скважина, эксплуатирующая обводненный пласт толщиной 40 м, кровля пласта находится на глубине 3080 м. Пористость пласта m=0,25. Скважина обсажена эксплуатационной колонной 168 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 89 мм до глубины 3111 м, башмак НКТ оборудован волновым генератором типа СГГК (конструкция НЦ НВМТ РАН). Пластовое давление 29,5 МПа, пластовая температура 91°С. Определенная в начале работ приемистость пласта равна 420 м3/сут при 13 МПа.

Присоединили к трубному пространству через тройник две напорные линии для подачи реагентов и обвязали первую с насосным агрегатом ЦА-320, вторую с кислотным агрегатом СИН-32. Приготовили раствор жидкого отхода производства синтетического цеолита NaX с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 60 м3 жидкого отхода производства синтетического цеолита NaX, добавили 1600 кг лигносульфоната с одновременным перемешиванием и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320. Одновременно с этим приготовили 60 м3 10% раствора соляной кислоты, для чего во вторую технологическую емкость закачали 35,4 м3 пресной воды и агрегатом СИН-32 закачали 24,6 м3 23% раствора соляной кислоты (товарная соляная кислота) и перемешивали в течение 10 мин по круговой схеме при помощи кислотного агрегата СИН-32. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 10 м3 12% соляной кислоты (кислотным агрегатом СИН-32) 0,5 м3 пресной воды; 3,5 м3 жидкого отхода производства синтетического цеолита NaX с добавкой лигносульфоната (насосным агрегатом ЦА-320); закрыли затрубное пространство и закачали последовательно: 16,5 м3 жидкого отхода производства синтетического цеолита NaX с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 20 м3 12% соляной кислоты (кислотным агрегатом СИН-32); 0,5 м3 пресной воды; 20 м3 жидкого отхода производства синтетического цеолита NaX с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 20 м3 12% соляной кислоты (кислотным агрегатом СИН-32); 0,5 м3 пресной воды; 20 м3 жидкого отхода производства синтетического цеолита NaX с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 10 м3 12%) соляной кислоты и 14,5 м3 технической воды (насосным агрегатом ЦА-320). Устье скважины загерметизировали и оставили скважину в покое на 12 ч для гелеобразования.

Приготовили 70 м3 замедленного кислотного раствора, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 14 м3 жидкого отхода производства синтетического цеолита NaX и 18 м3 пресной воды; в эту же технологическую емкость закачали 38 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320; затем добавили 1 тонну лигносульфоната и перемешивали в течение 16 мин по круговой схеме при помощи насосного агрегата ЦА-320. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 14 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32); закрыли затрубное пространство и закачали 56 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32), затем продавили 14,5 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 2,5 ч для реакции.

Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷14 мм в течение 72 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 35,8%.

Пример 6. Для обработки выбрана добывающая газовая скважина, эксплуатирующая обводненный пласт толщиной 38 м, кровля пласта находится на глубине 3240 м. Пористость пласта m=0,26. Скважина обсажена эксплуатационной колонной 168 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 89 мм до глубины 3260 м, башмак НКТ оборудован волновым генератором типа СГГК (конструкция НЦ НВМТ РАН). Пластовое давление 30,5 МПа, пластовая температура 91°С. Определенная в начале работ приемистость пласта равна 460 м3/сут при 13 МПа.

Присоединили к трубному пространству через тройник две напорные линии для подачи реагентов и обвязали первую с насосным агрегатом ЦА-320, вторую с кислотным агрегатом СИН-32. Приготовили водометанольный раствор для продавки, для чего в емкость закачали 5,2 м3 минерализованной воды с ρ=1,15 г/см3 и 9,8 м3 метанола (42,8… и 57.2… мас.% соответственно), перемешали в течение 5 мин. Приготовили раствор жидкого отхода производства синтетического цеолита NaA и NaA-У (в соотношении 0,5:1,5 соответственно) с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 60 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У, добавили 2 тонны лигносульфоната с одновременным перемешиванием и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320. Одновременно с этим приготовили 60 м3 9% раствора соляной кислоты, для чего во вторую технологическую емкость закачали 38 м3 пресной воды и агрегатом СИН-32 закачали 22 м3 23% раствора соляной кислоты (товарная соляная кислота) и перемешивали в течение 10 мин по круговой схеме при помощи кислотного агрегата СИН-32. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 10 м3 9% соляной кислоты (кислотным агрегатом СИН-32) 0,5 м3 пресной воды; 4,2 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320) (мас.%: 9,0… кислоты, 39.3… воды, 50.0… отхода и 1,7… лигносульфоната); закрыли затрубное пространство и закачали последовательно: 15,8 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 20 м3 9% соляной кислоты (кислотным агрегатом СИН-32); 0,5 м3 пресной воды; 20 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 20 м3 9% соляной кислоты (кислотным агрегатом СИН-32); 0,5 м3 пресной воды; 20 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 10 м3 9% соляной кислоты и 15 м3 водометанольного раствора (насосным агрегатом ЦА-320). Устье скважины загерметизировали и оставили скважину в покое на 14 ч для гелеобразования.

Приготовили водометанольный раствор для продавки, для чего в емкость закачали 5,2 м3 минерализованной воды с ρ=1,15 г/см3 и 9,8 м3 метанола, перемешали в течение 5 мин. Приготовили 80 м3 замедленного кислотного раствора, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 16 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У (в соотношении …1:…1) и 18 м3 метанола; в эту же технологическую емкость закачали 46 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320; затем добавили 1 тонну лигносульфоната и перемешивали в течение 16 мин по круговой схеме при помощи насосного агрегата ЦА-320. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 14,7 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32); закрыли затрубное пространство и закачали 65,3 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32), затем продавили 15 м3 водометанольного раствора. Устье скважины загерметизировали и оставили скважину в покое на 2,5 ч для реакции.

Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷14 мм в течение 72 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 38%.

Таким образом, приведенные примеры реализации изобретения показывают его соответствие критерию «практическая применимость».

Способ успешно опробован на обводненных скважинах в летний и зимний периоды, при температурах от -25°С до +25°С, и показал положительные результаты, его применение позволило получить дополнительную добычу нефти и газа, а также экономию от уменьшения отбора попутной воды.

Способ рекомендуется для обработки скважин, разрабатывающих обводненные трещиновато-пористые коллектора, имеющих высокую поглотительную способность.

Похожие патенты RU2425209C2

название год авторы номер документа
СПОСОБ ГИДРОФОБНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПРОДУКТИВНОГО ПЛАСТА 2009
  • Андреев Вадим Евгеньевич
  • Котенев Юрий Алексеевич
  • Пташко Олег Анатольевич
  • Дубинский Геннадий Семенович
  • Нечаева Ольга Егоровна
  • Андреев Антон Вадимович
  • Котенев Антон Юрьевич
  • Котенев Максим Юрьевич
  • Пташко Денис Олегович
  • Бадретдинов Саяв Садраевич
RU2425210C2
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2014
  • Андреев Вадим Евгеньевич
  • Дубинский Геннадий Семенович
  • Котенев Юрий Алексеевич
  • Пташко Олег Анатольевич
  • Хузин Ринат Раисович
RU2566344C1
СПОСОБ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ 2000
  • Хайрединов Н.Ш.
  • Загидуллина Л.Н.
  • Котенев Ю.А.
  • Андреев В.Е.
  • Зобов П.М.
RU2168616C1
СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТА 2001
  • Котенев Ю.А.
  • Загидуллина Л.Н.
  • Хайрединов Н.Ш.
  • Андреев В.Е.
  • Зобов П.М.
RU2180396C1
Способ увеличения нефтеотдачи пластов 2021
  • Габдрахманов Рустам Раисович
  • Раковский Тимофей Александрович
RU2756823C1
ГЕЛЕОБРАЗУЮЩИЙ СОСТАВ 2011
  • Стрижнев Владимир Алексеевич
  • Пресняков Александр Юрьевич
  • Нигматуллин Тимур Эдуардович
  • Емалетдинова Людмила Дмитриевна
  • Елесин Валерий Александрович
  • Урусов Сергей Анатольевич
  • Жумагазиев Ербол Тынышбаевич
RU2472836C1
ГЕЛЕОБРАЗУЮЩИЙ СОСТАВ ДЛЯ РЕГУЛИРОВАНИЯ ПРОНИЦАЕМОСТИ ПЛАСТОВ 2005
  • Мухаметшин Мусавир Мунавирович
  • Хасанов Фаат Фатхлбаянович
  • Шувалов Анатолий Васильевич
  • Емалетдинова Людмила Дмитриевна
  • Камалетдинова Резеда Миннисайриновна
  • Ягафаров Юлай Нургалеевич
  • Жадаев Юрий Васильевич
  • Галлямов Ильяс Ильдусович
  • Халиков Ильяс Шайханурович
RU2291890C1
ГИДРОФОБНАЯ ЭМУЛЬСИЯ 2004
  • Хлебников В.Н.
  • Котенев Ю.А.
  • Андреев В.Е.
  • Зобов П.М.
RU2241830C1
СПОСОБ ИМПУЛЬСНО-ВОЛНОВЫХ ОБРАБОТОК ПРОДУКТИВНОГО ПЛАСТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Дубинский Геннадий Семенович
  • Андреев Вадим Евгеньевич
  • Хузин Ринат Раисович
  • Хузин Наиль Ирикович
  • Мияссаров Альберт Шамилевич
RU2566343C1
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК СКВАЖИНЫ, ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2011
  • Насыбуллин Арслан Валерьевич
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
  • Бакиров Ильшат Мухаметович
RU2459074C1

Реферат патента 2011 года СПОСОБ ОБРАБОТКИ КАРБОНАТНЫХ И КАРБОНАТСОДЕРЖАЩИХ ПЛАСТОВ (ВАРИАНТЫ)

Изобретение относится к нефтегазодобывающей промышленности, а именно к добыче нефти и газа из неоднородных обводняющихся пластов на любой стадии разработки газовых и нефтяных месторождений. По одному варианту в способе обработки карбонатных и карбонатсодержащих пластов путем закачки в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат -ЛС, соляную кислоту -СК и воду, в качестве отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У, закачку осуществляют в две стадии с продавкой в пласт водой и остановкой на время гелеобразования, используя на первой стадии указанный раствор при следующем соотношении компонентов, мас.%: указанный отход 50,0-60,0, ЛС 0,5-5,0, СК 7,0-12,0, вода - остальное, на второй стадии - указанный раствор при следующем соотношении компонентов, мас.%: указанный отход 20,0-40,0, ЛС 0,5-5,0, СК 10,0-15,0, вода - остальное. По другому варианту в способе обработки указанных пластов путем закачки в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, ЛС, СК и воду, в качестве отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У при следующем соотношении компонентов, мас.%: указанный отход 20,0-40,0, ЛС 0,5-5,0, СК 10,0-15,0, вода - остальное, и предварительно проводят последовательную закачку 7-12%-ного раствора СК, первого буфера пресной воды, жидкого отхода производства указанного выше цеолита, содержащего 2-5 мас.% ЛС, второго буфера пресной воды, 7-12%-ного раствора СК и продавку водой в объеме НКТ и устьевой обвязки оборудования. Изобретение развито в зависимых пунктах. Технический результат - повышение эффективности обработки пластов и расширение температурных границ применения способа. 2 н. и 8 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 425 209 C2

1. Способ обработки карбонатных и карбонатсодержащих пластов, включающий закачку в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат, соляную кислоту и воду, отличающийся тем, что в качестве указанного отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У, закачку осуществляют в две стадии с продавкой в пласт водой и остановкой на время гелеобразования, используя на первой стадии указанный раствор при следующем соотношении компонентов, мас.%:
Указанный отход 50,0-60,0 Лигносульфонат 0,5-5,0 Соляная кислота 7,0-12,0 Вода остальное,


а на второй стадии - указанный раствор при следующем соотношении компонентов, мас.%:
Указанный отход 20,0-40,0 Лигносульфонат 0,5-5,0 Соляная кислота 10,0-15,0 Вода остальное

2. Способ по п.1, отличающийся тем, что смешивание раствора соляной кислоты и указанного отхода с добавкой лигносульфоната осуществляют на устье путем закачки через волновой смеситель, установленный на устье скважины.

3. Способ по п.1, отличающийся тем, что башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот гидравлический волновой генератор.

4. Способ по любому из пп.1-3, отличающийся тем, что используемая для продавки вода дополнительно содержит метанол при следующем соотношении компонентов, мас.%:
Метанол 50-60 Вода минерализованная, ρ=1,1-1,24 г/см3 остальное

5. Способ по любому из пп.1-4, отличающийся тем, что используемый на втором этапе указанный раствор дополнительно содержит 20-32 мас.% метанола.

6. Способ обработки карбонатных и карбонатсодержащих пластов, включающий закачку в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат, соляную кислоту и воду, отличающийся тем, что в качестве указанного отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У при следующем соотношении компонентов, мас.%:
Указанный отход 20,0-40,0 Лигносульфонат 0,5-5,0 Соляная кислота 10,0-15,0 Вода остальное,


и предварительно проводят последовательную закачку 7-12%-ного раствора соляной кислоты, первого буфера пресной воды, жидкого отхода производства синтетического цеолита NaX и/или NaA+NaA-У, содержащего 2-5 мас.% лигносульфоната, второго буфера пресной воды, 7-12%-ного раствора соляной кислоты и продавку водой в объеме насосно-компрессорных труб и устьевой обвязки оборудования.

7. Способ по п.6, отличающийся тем, что при больших объемах закачиваемых растворов выполняют 2-4 цикла последовательных закачек в указанной последовательности с продавкой после последней части раствора соляной кислоты.

8. Способ по п.6 или 7, отличающийся тем, что башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот гидравлический волновой генератор.

9. Способ по любому из пп.6-8, отличающийся тем, что используемая для продавки вода дополнительно содержит метанол при следующем соотношении компонентов, мас.%:
Метанол 50-60 Вода минерализованная, ρ=1,1-1,24 г/см3 остальное

10. Способ по любому из пп.6-9, отличающийся тем, что указанный раствор дополнительно содержит 20-32 мас.% метанола.

Документы, цитированные в отчете о поиске Патент 2011 года RU2425209C2

ЗАМЕДЛЕННЫЙ КИСЛОТНЫЙ И ГЕЛЕОБРАЗУЮЩИЙ СОСТАВ 2002
  • Хлебников В.Н.
  • Тахаутдинов Р.Ш.
  • Овчинников Р.В.
  • Ахмадишин Р.З.
RU2194157C1
СПОСОБ ИЗВЛЕЧЕНИЯ НЕФТИ 2005
  • Габдрахманов Нурфаяз Хабибрахманович
  • Якупов Рустам Фазылович
  • Якименко Галия Хасимовна
  • Рамазанова Альфия Анваровна
RU2295635C2
СПОСОБ РЕГУЛИРОВАНИЯ ПРОНИЦАЕМОСТИ НЕОДНОРОДНОГО ТЕРРИГЕННОГО ПЛАСТА 2001
  • Закиров А.Ф.
  • Халиуллин Ф.Ф.
  • Таипова В.А.
  • Якименко Г.Х.
  • Хлебников В.Н.
  • Миннуллин Р.М.
  • Хисаева Д.А.
  • Гафуров О.Г.
RU2184841C1
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ПОЛОСОВОЙ СТАЛИ ДЛЯ ЭМАЛИРОВАНИЯ 2006
  • Сеничев Геннадий Сергеевич
  • Буданов Анатолий Петрович
  • Антипанов Вадим Григорьевич
  • Корнилов Владимир Леонидович
  • Кудряков Евгений Анатольевич
RU2307174C1
СПОСОБ ВЫТЕСНЕНИЯ ОСТАТОЧНОЙ НЕФТИ 1999
  • Мухтаров Я.Г.
  • Давыдов В.П.
  • Ягафаров Ю.Н.
  • Илюков В.А.
  • Гумеров Р.Р.
  • Гафуров О.Г.
  • Якименко Г.Х.
RU2170817C2
Способ обработки карбонатного продуктивного пласта 1989
  • Орлов Григорий Алексеевич
  • Глущенко Виктор Николаевич
  • Мусабиров Мунавир Хадеевич
  • Поздеев Олег Виниаминович
  • Королев Игорь Павлович
SU1624134A1
US 5028344 A, 02.07.1991
US 6989057 B1, 24.01.2006.

RU 2 425 209 C2

Авторы

Андреев Вадим Евгеньевич

Котенев Юрий Алексеевич

Пташко Олег Анатольевич

Дубинский Геннадий Семенович

Ганиев Ривнер Фазылович

Украинский Леонид Ефимович

Хузин Ринат Раисович

Каптелинин Олег Владиславович

Андреев Антон Вадимович

Котенев Максим Юрьевич

Даты

2011-07-27Публикация

2009-02-24Подача