СПОСОБ ЭЛЕКТРОАКТИВИРОВАНИЯ ВОДНЫХ РАСТВОРОВ Российский патент 2011 года по МПК C02F1/46 

Описание патента на изобретение RU2431609C2

Изобретение относится к технологии обработки водных растворов и может быть использовано для получения электроактивированных растворов.

Электроактивированная вода и водные растворы применяют в сельском хозяйстве, медицине, промышленности.

Электроактивирование осуществляют путем обработки растворов в диафрагменных электролизерах-активаторах с помощью постоянного электрического тока. При этом в катодной камере обычно получают щелочной раствор-католит - с рН 8…12 и окислительно-восстановительным потенциалом (ОВП) -200…-900 мВ (относительно хлорсеребряного электрода сравнения - ХСЭ), в анодной камере - кислый раствор - анолит с рН 2…5 и ОВП+300…+1200 мВ [1].

Описан способ электроактивирования водного раствора поваренной соли (хлорида натрия с концентрацией 5…10%, например, на установке типа СТЭЛ-МТ-1 (изготовитель НПО «Экран», г.Москва) [2].

В комплект установки входит вертикальный диафрагменный электролизер-активатор, емкости для исходного водного раствора католита и анолита, соединительные трубки и арматура. Электролизер включает коаксиально-расположенные электроды (стержень и цилиндр), керамическую диафрагму между ними, которые закреплены в нижней и верхней втулках с каналами для подачи и отвода жидкостей и прокладками, а также водоструйный насос на входе для подачи исходного раствора из исходной емкости в катодную и анодную камеры. Электроды изготовлены из коррозионно-стойких материалов, например, катод - из титана, анод - из титана с покрытием из оксидов титана и рутения (ОРТА). Для наработки, в частности, анолита - дезинфицирующего раствора в качестве исходного используют 5...10%-ные водные растворы поваренной соли. После промывки систем шланг водоструйного насоса соединяют с краном водопроводной сети и подают исходный раствор на вход электролизера, подают напряжение, силу тока устанавливают в пределах 5…7,5 А и поток католита и анолит до 10 л/ч. Получают анолит, содержащий оксидантов до 300 мг/л в расчете на активный хлор, который используют по назначению. Недостатки способа: относительно большой расход поваренной соли.

Известен способ электроактивирования водных растворов солей - хлорида, сульфата, ацетата натрия или хлорида аммония с концентрацией 0,5-0,95% на установке типа СТЭЛ при соотношениях скоростей протока католита и анолита 0,744…0,942. Получают католит и анолит с рН 9,2…10,4 и 1,8…5,0 и ОВП -720…-894 мВ и +903…+1189 мВ соответственно. Содержание в анолите оксидантов - до 400 мг/л (прототип) [3]. Недостатки способа: повышенное содержание оксидантов, особенно, активного хлора, в анолитах, отработанных анолитах, повышенные затраты на нейтрализацию отработанных растворов, резкий запах оксидантов (особенно активного хлора), что ухудшает экологическую ситуацию процесса.

Технический результат - разработка способа электроактивирования водных растворов с более благоприятными условиями труда, снижение затрат, расширение ассортимента электроактивированных растворов.

Это достигается тем, что в качестве исходных растворов используют 0,6-0,9%-ные водные растворы глицина при скоростях протока католита и анолита 3,0…6,0 л/ч, электроактивацию осуществляют при плотностях тока 40-120 А/м2 на установке типа СТЭЛ при температурах 18-25°С. Электроактивацию исходных растворов проводят постоянным электрическим током в проточном диафрагменном электролизере с раздельным вводом в катодную и анодную камеры и выходом из них. Исходные растворы вводятся в электролизер с помощью водоструйного насоса, встроенного в него на вводе.

В этих условиях получают анолит и католит со следующими показателями качества (включая исходный)

ОВП, мВ Содержание оксидантов в растворе в пересчете на активный кислород, мг/л исходный раствор 5,0…5,7 +200…+368 - католит 7,8…8,5 -144…-310 - анолит 4,4…4,7 +380…+540 8,3…10,1

при удельном расходе количества электричества 0,05-0,06 А·ч/л.

Выбор исходного раствора связан с тем, что глицин обладает способностью существования в различных формах: Н2NСН2СООН↔NН3СН2СОО-.

Это позволяет активировать обе функциональные группы: аминогруппу и карбоксильную группу, что усиливает бактерицидный эффект от использования анолита, 6,9-10,8% глицина при этом разлагаются, превращаясь в соединения, не содержащие азота.

Использование раствора глицина позволяет также снизить образование на поверхностях, подвергаемых дезинфекции, твердого остатка, характерного для варианта использования в исходных растворах солей.

Пример 1

На установке типа СТЭЛ-МТ-1 подвергали электроактивированию 0,9% раствор глицина при силе тока 0,6 А (плотности тока на аноде и катоде в пределах 80…120 А/м2), скоростях протока 5,2 л/ч католита и 5,6 л/ч анолита при температуре 20-25°С. Качество растворов:

ОВП, мВ Содержание оксидантов в растворе в пересчете на активный кислород католит 8,5 -144 - анолит 4,7 +540 10,1 исходный раствор 5,0 +368 -

Снижение количества глицина по сравнению с исходным 10,8%, удельный расход количества электричества 0,06 А·ч/л. Анолит имеет слабый специфический запах.

Пример 2

По примеру 1 проводили электроактивацию водного 0,6%-ного раствора глицина при силе тока 0,3-0,4 А (плотность тока на электродах 40-60А/м2), скоростях протока католита 3,5 л/ч, анолита 3,5 л/ч при температуре 18-20°С, получили растворы следующего качества:

рН ОВП, мВ Содержание оксидантов в растворе в пересчете на активный кислород католит 7,8 -310 - анолит 4,4 +380 7,1 исходный раствор 5,7 +200 -

Снижение количества глицина по сравнению с исходным 6,9%. Удельный расход количества электричества 0,05 А·ч/л. Анолит обладает слабым специфическим запахом.

Изменения режима электроактивации может привести к ухудшению показателей качества и эффективности.

Таким образом, разработанный способ позволяет создать более благоприятные условия труда работающих, снизить затраты, расширить ассортимент, электроактивированных растворов.

Источники информации

1. Бахир В.М. Современные технические электрохимические системы для обеззараживания, очистки и активирования воды. М: ВНИИИМТ, 1999, 84 с.

2. Установка СТЭЛ-МТ-1. Руководство оператора. Режимно-технологическая карта. НПО «Экран», Москва, 1993.

3. Пат.2297980, 2005, МКИ С 02 F 1/46.

Похожие патенты RU2431609C2

название год авторы номер документа
СПОСОБ ЭЛЕКТРОАКТИВИРОВАНИЯ ВОДНЫХ РАСТВОРОВ 2005
  • Осадченко Иван Михайлович
  • Горлов Иван Федорович
RU2297980C1
СПОСОБ ЭЛЕКТРОАКТИВИРОВАНИЯ ВОДНЫХ РАСТВОРОВ СОЛЕЙ НАТРИЯ 2013
  • Осадченко Иван Михайлович
  • Горлов Иван Фёдорович
  • Кузнецова Елена Александровна
  • Стародубова Юлия Владимировна
RU2548967C2
СПОСОБ ПОЛУЧЕНИЯ ДЕЗИНФИЦИРУЮЩЕГО РАСТВОРА - НЕЙТРАЛЬНОГО АНОЛИТА 2005
  • Осадченко Иван Михайлович
  • Горлов Иван Фёдорович
RU2277512C1
СПОСОБ ЭЛЕКТРОАКТИВИРОВАНИЯ ПИТЬЕВОЙ ВОДЫ 2004
  • Осадченко И.М.
  • Горлов И.Ф.
  • Харченко О.В.
RU2252919C1
СПОСОБ ЭЛЕКТРОАКТИВИРОВАНИЯ ВОДНЫХ РАСТВОРОВ СОЛЕЙ 2014
  • Осадченко Иван Михайлович
  • Горлов Иван Федорович
  • Мосолова Наталья Ивановна
  • Злобина Елена Юрьевна
  • Евдокимов Иван Алексеевич
RU2572420C1
Способ получения электроактивированных водных растворов солей натрия 2016
  • Осадченко Иван Михайлович
  • Горлов Иван Фёдорович
  • Сложенкина Марина Ивановна
  • Николаев Дмитрий Владимирович
  • Прокшиц Владимир Никифорович
RU2635618C2
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН БОБОВЫХ КУЛЬТУР 2004
  • Харченко О.В.
  • Горлов И.Ф.
  • Осадченко И.М.
  • Чурзин В.Н.
RU2263433C1
СПОСОБ КОНСЕРВИРОВАНИЯ ЗЕЛЕНЫХ КОРМОВ 2009
  • Осадченко Иван Михайлович
  • Горлов Иван Фёдорович
  • Пилипенко Денис Николаевич
  • Волколупов Георгий Валентинович
  • Струк Александр Николаевич
  • Натыров Аркадий Канурович
RU2402235C1
Способ получения электроактивированных водных растворов солей 2016
  • Осадченко Иван Михайлович
  • Горлов Иван Фёдорович
  • Сложенкина Марина Ивановна
  • Карпенко Екатерина Владимировна
  • Стародубова Юлия Владимировна
  • Гришин Владимир Сергеевич
  • Андреев-Чадаев Павел Сергеевич
RU2635131C1
Способ получения католитов-антиоксидантов электроактивированных водных растворов солей и их хранение 2019
  • Горлов Иван Фёдорович
  • Осадченко Иван Михайлович
  • Сложенкина Марина Ивановна
  • Мосолов Александр Анатольевич
  • Стародубова Юлия Владимировна
  • Ткачева Ирина Васильевна
  • Черняк Александр Александрович
RU2712614C1

Реферат патента 2011 года СПОСОБ ЭЛЕКТРОАКТИВИРОВАНИЯ ВОДНЫХ РАСТВОРОВ

Изобретение относится к технологии обработки водных растворов и может быть использовано для получения электроактивированных растворов, применяемых в сельском хозяйстве, медицине, промышленности. Предложен способ электроактивирования водных растворов путем обработки в проточном диафрагменном электролизере постоянным электрическим током исходного раствора - 0,6…0,9% раствора глицина при скоростях протока католита и анолита 3,0…6,0 л/ч при плотностях тока 40-120 А/м2 и удельном расходе количества электричества 0,05…0,06 А·ч/л. Способ позволяет создать более благоприятные условия труда работающих, снизить затраты, расширить ассортимент электроактивированных растворов.

Формула изобретения RU 2 431 609 C2

Способ электроактивирования водных растворов, включающий обработку исходных водных растворов постоянным электрическим током в проточном диафрагменном электролизере с раздельным вводом в катодную и анодную камеры и выходом из них, отличающийся тем, что в качестве исходных растворов используют 0,6…0,9%-ный раствор глицина при скоростях протока католита и анолита 3,0…6,0 л/ч при плотностях тока 40-120 А/м2 и удельном расходе количества электричества 0,05…0,06 А·ч/л.

Документы, цитированные в отчете о поиске Патент 2011 года RU2431609C2

СПОСОБ ЭЛЕКТРОАКТИВИРОВАНИЯ ВОДНЫХ РАСТВОРОВ 2005
  • Осадченко Иван Михайлович
  • Горлов Иван Федорович
RU2297980C1
RU 2003117107 А, 10.12.2004
УСТАНОВКА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ АКТИВАЦИИ ОРОСИТЕЛЬНОЙ ВОДЫ, ПРЕИМУЩЕСТВЕННО ДЛЯ СИСТЕМ КАПЕЛЬНОГО ОРОШЕНИЯ 2003
  • Абезин В.Г.
  • Карпунин В.В.
  • Лагутин А.Н.
  • Рогачев А.Ф.
  • Салдаев А.М.
  • Карпунин В.В.
RU2224722C1
Устройство для электрохимической обработки жидкости 1986
  • Задорожний Юрий Георгиевич
  • Бахир Витольд Михайлович
  • Спектор Леонид Ефимович
  • Беликов Владимир Сергеевич
  • Лысенко Николай Матвеевич
  • Подколзин Александр Александрович
  • Дмитриев Николай Николаевич
  • Штефан Валентина Николаевна
  • Грачев Юрий Андреевич
SU1634643A1
СПОСОБ ОБНАРУЖЕНИЯ ТРИНИТРАТА ГЛИЦЕРИНА 2003
  • Максимов Е.М.
  • Фесенко А.В.
  • Цаплев Ю.Б.
RU2253860C2

RU 2 431 609 C2

Авторы

Осадченко Иван Михайлович

Горлов Иван Фёдорович

Сложенкина Марина Ивановна

Харченко Оксана Владимировна

Чурзин Виктор Николаевич

Даты

2011-10-20Публикация

2009-04-13Подача